diff options
author | Chloe Brown <chloe.brown.00@outlook.com> | 2022-07-13 17:13:54 +0100 |
---|---|---|
committer | Chloe Brown <chloe.brown.00@outlook.com> | 2022-07-13 17:13:54 +0100 |
commit | e98be8390fccbbb2c0aeb2ab50f8e8696bc11847 (patch) | |
tree | 469b21d9eee06a3f2afd5e3933c68771fc570473 | |
parent | fd8eed040d6c567f85c9f7509bce60c6ed1c4cce (diff) |
Prove alpha equivalence is an equivalence.
-rw-r--r-- | src/Data/Type/Properties.agda | 16 |
1 files changed, 16 insertions, 0 deletions
diff --git a/src/Data/Type/Properties.agda b/src/Data/Type/Properties.agda index 16f6d8e..0ef018f 100644 --- a/src/Data/Type/Properties.agda +++ b/src/Data/Type/Properties.agda @@ -27,6 +27,7 @@ open import Relation.Binary hiding (_⇔_) import Relation.Binary.Construct.On as On using (wellFounded) open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_; _≗_; sym; cong; cong₂; module ≡-Reasoning) +import Relation.Binary.Reasoning.Setoid as Reasoning open import Relation.Nullary using (Dec; Reflects; ¬_; _because_; yes; no) open import Relation.Nullary.Negation using (¬?; decidable-stable) @@ -262,3 +263,18 @@ free-≈ (all {α} {A} {β} {B} A≈B) = begin all (λ δ∉∀α∙A δ∉∀γ∙C → ≈-trans (A≈B δ∉∀α∙A (P.subst (_ ∉_) (free-≈ (all A≈B)) δ∉∀α∙A)) (B≈C (P.subst (_ ∉_) (sym (free-≈ (all B≈C))) δ∉∀γ∙C) δ∉∀γ∙C)) + +≈-isEquivalence : IsEquivalence _≈_ +≈-isEquivalence = record + { refl = ≈-refl + ; sym = ≈-sym + ; trans = ≈-trans + } + +open IsEquivalence ≈-isEquivalence public + using () renaming (reflexive to ≈-reflexive) + +≈-setoid : Setoid _ _ +≈-setoid = record { isEquivalence = ≈-isEquivalence } + +module ≈-Reasoning = Reasoning ≈-setoid |