summaryrefslogtreecommitdiff
path: root/src/Data/List
diff options
context:
space:
mode:
authorChloe Brown <chloe.brown.00@outlook.com>2022-07-07 17:53:24 +0100
committerChloe Brown <chloe.brown.00@outlook.com>2022-07-07 17:53:24 +0100
commit2147acd780ca4586a4fd7b045eb92611cdbb13a0 (patch)
tree7a07f466a44b028fc506a636e134f60e420b65e6 /src/Data/List
parent07c4a784b46f6cfe47d1c37329051b4b5d459755 (diff)
Prove alpha equivalence preserves free variables.
Diffstat (limited to 'src/Data/List')
-rw-r--r--src/Data/List/Properties/Ext.agda68
1 files changed, 68 insertions, 0 deletions
diff --git a/src/Data/List/Properties/Ext.agda b/src/Data/List/Properties/Ext.agda
new file mode 100644
index 0000000..b27aeb4
--- /dev/null
+++ b/src/Data/List/Properties/Ext.agda
@@ -0,0 +1,68 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Data.List.Properties.Ext where
+
+open import Data.Bool using (Bool)
+open import Data.Empty using (⊥-elim)
+open import Data.List
+open import Data.List.Membership.Propositional using (_∈_)
+open import Data.List.Relation.Unary.Any using (Any)
+open import Data.Product using (Σ)
+open import Function using (Equivalence; _⇔_; _∘_)
+open import Level using (Level)
+open import Relation.Binary.PropositionalEquality using (_≡_; _≗_; cong; cong₂)
+open import Relation.Nullary using (Dec; yes; no)
+open import Relation.Unary using (Pred; Decidable; _≐_)
+
+private
+ variable
+ a p : Level
+ A B : Set a
+
+open Any
+open Bool
+open Dec
+open Equivalence
+open _≡_
+open Σ
+
+-- Properties of filter -------------------------------------------------------
+
+module _ {P : Pred A p} (P? : Decidable P) where
+ filter-cong :
+ ∀ {Q : Pred A a} (Q? : Decidable Q) → P ≐ Q → filter P? ≗ filter Q?
+ filter-cong Q? P≐Q [] = refl
+ filter-cong Q? P≐Q (x ∷ xs) with P? x | Q? x
+ ... | yes Px | yes Qx = cong (x ∷_) (filter-cong Q? P≐Q xs)
+ ... | yes Px | no ¬Qx = ⊥-elim (¬Qx (P≐Q .proj₁ Px))
+ ... | no ¬Px | yes Qx = ⊥-elim (¬Px (P≐Q .proj₂ Qx))
+ ... | no ¬Px | no ¬Qx = filter-cong Q? P≐Q xs
+
+ filter-map :
+ ∀ (f : B → A) xs →
+ filter P? (map f xs) ≡ map f (filter (P? ∘ f) xs)
+ filter-map f [] = refl
+ filter-map f (x ∷ xs) with does (P? (f x))
+ ... | true = cong (f x ∷_) (filter-map f xs)
+ ... | false = filter-map f xs
+
+ map-filter-cong :
+ ∀ {f g : A → B} → (f≗g : ∀ {x} → P x → f x ≡ g x) →
+ map f ∘ filter P? ≗ map g ∘ filter P?
+ map-filter-cong f≗g [] = refl
+ map-filter-cong f≗g (x ∷ xs) with P? x
+ ... | yes Px = cong₂ _∷_ (f≗g Px) (map-filter-cong f≗g xs)
+ ... | no ¬Px = map-filter-cong f≗g xs
+
+ filter-map-comm :
+ ∀ {Q : Pred B a} (Q? : Decidable Q) {f g : B → A} xs →
+ (∀ {x} → x ∈ xs → P (f x) ⇔ Q x) →
+ (∀ {x} → Q x → f x ≡ g x) →
+ filter P? (map f xs) ≡ map g (filter Q? xs)
+ filter-map-comm Q? [] P⇔Q f≗g = refl
+ filter-map-comm Q? {f} (x ∷ xs) P⇔Q f≗g with P? (f x) | Q? x
+ ... | yes Pfx | yes Qx =
+ cong₂ _∷_ (f≗g Qx) (filter-map-comm Q? xs (P⇔Q ∘ there) f≗g)
+ ... | yes Pfx | no ¬Qx = ⊥-elim (¬Qx (P⇔Q (here refl) .to Pfx))
+ ... | no ¬Pfx | yes Qx = ⊥-elim (¬Pfx (P⇔Q (here refl) .from Qx))
+ ... | no ¬Pfx | no ¬Qx = filter-map-comm Q? xs (P⇔Q ∘ there) f≗g