From 027d42676f98282b9d50f5c31118c7a868ca104b Mon Sep 17 00:00:00 2001 From: Chloe Brown Date: Thu, 7 Jul 2022 21:52:27 +0100 Subject: Prove alpha equivalence is symmetric. --- src/Data/Type/Properties.agda | 8 +++++++- 1 file changed, 7 insertions(+), 1 deletion(-) diff --git a/src/Data/Type/Properties.agda b/src/Data/Type/Properties.agda index ecfbc92..28667fa 100644 --- a/src/Data/Type/Properties.agda +++ b/src/Data/Type/Properties.agda @@ -18,7 +18,7 @@ open import Data.List.Relation.Unary.Any using (Any) open import Data.Nat using (ℕ; _<_; _≟_; _+_) open import Data.Nat.Induction using (<-wellFounded) open import Data.Nat.Properties -open import Data.Product using () renaming (_,_ to _,′_) +open import Data.Product using (∃₂) renaming (_,_ to _,′_) open import Data.Sum as ⊎ using (_⊎_; fromInj₁; fromInj₂; [_,_]) open import Data.Type mkFresh open import Induction.WellFounded as Wf using (WfRec) @@ -246,3 +246,9 @@ free-≈ (all {α} {A} {β} {B} A≈B) = begin go (bin ⊗ A B) hyp = bin (hyp A (m≤m+n _ _)) (hyp B (m