From 89ba967e8f458abecde49006a7c1761af765c520 Mon Sep 17 00:00:00 2001 From: Chloe Brown Date: Thu, 6 Jan 2022 18:17:12 +0000 Subject: misc: move contradiction example to exercises --- .../Instance/Properties/Setoids/Contradiction.agda | 44 ---------------------- 1 file changed, 44 deletions(-) delete mode 100644 src/CatTheory/Category/Instance/Properties/Setoids/Contradiction.agda (limited to 'src/CatTheory/Category/Instance') diff --git a/src/CatTheory/Category/Instance/Properties/Setoids/Contradiction.agda b/src/CatTheory/Category/Instance/Properties/Setoids/Contradiction.agda deleted file mode 100644 index 1a553d3..0000000 --- a/src/CatTheory/Category/Instance/Properties/Setoids/Contradiction.agda +++ /dev/null @@ -1,44 +0,0 @@ -{-# OPTIONS --without-K --safe #-} - -module CatTheory.Category.Instance.Properties.Setoids.Contradiction where - -open import Categories.Category using (Category) -open import Categories.Category.Instance.Setoids -import Categories.Morphism as M -open import Data.Bool using (Bool; true; false) -open import Data.Nat using (ℕ; suc) -open import Function.Equality using (_⟨$⟩_) -open import Function.Structures using (IsInjection) -open import Level using (0ℓ) -open import Relation.Binary.PropositionalEquality -open import Relation.Nullary using (¬_) -open import Relation.Nullary.Negation using (contradiction) - -module Monomorphisms where - open Category (Setoids 0ℓ 0ℓ) - open M (Setoids 0ℓ 0ℓ) - - f : setoid Bool ⇒ setoid ℕ - f = record { _⟨$⟩_ = λ { true → 0 ; false → 1 } ; cong = cong _ } - - g₁ : setoid ℕ ⇒ setoid Bool - g₁ = record { _⟨$⟩_ = λ { 0 → true ; 1 → false ; (suc (suc _)) → true } ; cong = cong _ } - - g₂ : setoid ℕ ⇒ setoid Bool - g₂ = record { _⟨$⟩_ = λ { 0 → true ; 1 → false ; (suc (suc _)) → false } ; cong = cong _ } - - g₁∘f≈id : g₁ RetractOf f - g₁∘f≈id {false} refl = refl - g₁∘f≈id {true} refl = refl - - g₂∘f≈id : g₂ RetractOf f - g₂∘f≈id {false} refl = refl - g₂∘f≈id {true} refl = refl - - g₁≉g₂ : ¬ g₁ ≈ g₂ - g₁≉g₂ g₁≈g₂ = contradiction true≡false (λ ()) - where - open ≡-Reasoning - - true≡false : true ≡ false - true≡false = g₁≈g₂ (refl {x = 3}) -- cgit v1.2.3