{-# OPTIONS --safe #-} module CBPV.Equality where open import Data.List using (List; []; _∷_; _++_) open import Data.List.Membership.Propositional using (_∈_) open import Data.List.Relation.Unary.All using (All; _∷_; []; lookup) open import Data.List.Relation.Unary.Any using (here; there) open import Data.Product using () renaming (_×_ to _×′_; _,_ to _,′_) open import Level using (0ℓ) open import Relation.Binary using (Rel; _⇒_; _=[_]⇒_; Reflexive; Symmetric; Transitive; Setoid) open import Relation.Binary.PropositionalEquality using (refl) import Relation.Binary.Reasoning.Setoid as SetoidReasoning open import CBPV.Axiom open import CBPV.Family open import CBPV.Term open import CBPV.Type private variable Vs Vs′ : List (Context ×′ ValType) Cs Cs′ : List (Context ×′ CompType) Γ Δ : Context A A′ : ValType B B′ : CompType infix 0 _⨾_▹_⊢ᵛ_≈_ _⨾_▹_⊢ᶜ_≈_ data _⨾_▹_⊢ᵛ_≈_ : ∀ Vs Cs Γ {A} → Rel (⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᵛ A) 0ℓ data _⨾_▹_⊢ᶜ_≈_ : ∀ Vs Cs Γ {B} → Rel (⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᶜ B) 0ℓ data _⨾_▹_⊢ᵛ_≈_ where refl : Reflexive {A = ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᵛ A} (Vs ⨾ Cs ▹ Γ ⊢ᵛ_≈_) sym : Symmetric {A = ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᵛ A} (Vs ⨾ Cs ▹ Γ ⊢ᵛ_≈_) trans : Transitive {A = ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᵛ A} (Vs ⨾ Cs ▹ Γ ⊢ᵛ_≈_) axiom : (_⨾_▹⊢ᵛ_≋_ Vs Cs {A}) ⇒ (Vs ⨾ Cs ▹ [] ⊢ᵛ_≈_) ren : (ρ : Γ ~[ I ]↝ᵛ Δ) → (Vs ⨾ Cs ▹ Γ ⊢ᵛ_≈_) =[ renᵛ {A = A} ρ ]⇒ (Vs ⨾ Cs ▹ Δ ⊢ᵛ_≈_) msub : {val₁ val₂ : ⌞ Vs ⌟ᵛ ⇒ᵛ δᵛ Γ (⌞ Vs′ ⌟ᵛ ⨾ ⌞ Cs′ ⌟ᶜ ▹_⊢ᵛ_)} {comp₁ comp₂ : ⌞ Cs ⌟ᶜ ⇒ᶜ δᶜ Γ (⌞ Vs′ ⌟ᵛ ⨾ ⌞ Cs′ ⌟ᶜ ▹_⊢ᶜ_)} {t u : ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᵛ A} → (∀ {A Δ} → (m : (Δ ,′ A) ∈ Vs) → Vs′ ⨾ Cs′ ▹ Δ ++ Γ ⊢ᵛ val₁ m ≈ val₂ m) → (∀ {B Δ} → (m : (Δ ,′ B) ∈ Cs) → Vs′ ⨾ Cs′ ▹ Δ ++ Γ ⊢ᶜ comp₁ m ≈ comp₂ m) → Vs ⨾ Cs ▹ Γ ⊢ᵛ t ≈ u → Vs′ ⨾ Cs′ ▹ Γ ⊢ᵛ msubᵛ val₁ comp₁ t ≈ msubᵛ val₂ comp₂ u data _⨾_▹_⊢ᶜ_≈_ where refl : Reflexive {A = ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᶜ B} (Vs ⨾ Cs ▹ Γ ⊢ᶜ_≈_) sym : Symmetric {A = ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᶜ B} (Vs ⨾ Cs ▹ Γ ⊢ᶜ_≈_) trans : Transitive {A = ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᶜ B} (Vs ⨾ Cs ▹ Γ ⊢ᶜ_≈_) axiom : (_⨾_▹⊢ᶜ_≋_ Vs Cs {B}) ⇒ (Vs ⨾ Cs ▹ [] ⊢ᶜ_≈_) ren : (ρ : Γ ~[ I ]↝ᵛ Δ) → (Vs ⨾ Cs ▹ Γ ⊢ᶜ_≈_) =[ renᶜ {B = B} ρ ]⇒ (Vs ⨾ Cs ▹ Δ ⊢ᶜ_≈_) msub : {val₁ val₂ : ⌞ Vs ⌟ᵛ ⇒ᵛ δᵛ Γ (⌞ Vs′ ⌟ᵛ ⨾ ⌞ Cs′ ⌟ᶜ ▹_⊢ᵛ_)} {comp₁ comp₂ : ⌞ Cs ⌟ᶜ ⇒ᶜ δᶜ Γ (⌞ Vs′ ⌟ᵛ ⨾ ⌞ Cs′ ⌟ᶜ ▹_⊢ᶜ_)} {t u : ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᶜ B} → (∀ {A Δ} → (m : (Δ ,′ A) ∈ Vs) → Vs′ ⨾ Cs′ ▹ Δ ++ Γ ⊢ᵛ val₁ m ≈ val₂ m) → (∀ {B Δ} → (m : (Δ ,′ B) ∈ Cs) → Vs′ ⨾ Cs′ ▹ Δ ++ Γ ⊢ᶜ comp₁ m ≈ comp₂ m) → Vs ⨾ Cs ▹ Γ ⊢ᶜ t ≈ u → Vs′ ⨾ Cs′ ▹ Γ ⊢ᶜ msubᶜ val₁ comp₁ t ≈ msubᶜ val₂ comp₂ u ≈ᵛ-setoid : (Vs : List (Context ×′ ValType)) (Cs : List (Context ×′ CompType)) (Γ : Context) (A : ValType) → Setoid 0ℓ 0ℓ ≈ᵛ-setoid Vs Cs Γ A = record { Carrier = ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᵛ A ; _≈_ = Vs ⨾ Cs ▹ Γ ⊢ᵛ_≈_ ; isEquivalence = record { refl = refl ; sym = sym ; trans = trans } } ≈ᶜ-setoid : (Vs : List (Context ×′ ValType)) (Cs : List (Context ×′ CompType)) (Γ : Context) (B : CompType) → Setoid 0ℓ 0ℓ ≈ᶜ-setoid Vs Cs Γ B = record { Carrier = ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᶜ B ; _≈_ = Vs ⨾ Cs ▹ Γ ⊢ᶜ_≈_ ; isEquivalence = record { refl = refl ; sym = sym ; trans = trans } } module ValReasoning {Vs} {Cs} {Γ} {A} = SetoidReasoning (≈ᵛ-setoid Vs Cs Γ A) module CompReasoning {Vs} {Cs} {Γ} {B} = SetoidReasoning (≈ᶜ-setoid Vs Cs Γ B) -- Congruence val-congᵛ : (t : ⌞ (Δ ,′ A′) ∷ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᵛ A) {s u : ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Δ ++ Γ ⊢ᵛ A′} → Vs ⨾ Cs ▹ Δ ++ Γ ⊢ᵛ s ≈ u → Vs ⨾ Cs ▹ Γ ⊢ᵛ val-instᵛ s t ≈ val-instᵛ u t val-congᵛ t s≈u = msub {t = t} (λ { (here refl) → s≈u ; (there m) → refl }) (λ m → refl) refl val-congᶜ : (t : ⌞ (Δ ,′ A) ∷ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᶜ B) {s u : ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Δ ++ Γ ⊢ᵛ A} → Vs ⨾ Cs ▹ Δ ++ Γ ⊢ᵛ s ≈ u → Vs ⨾ Cs ▹ Γ ⊢ᶜ val-instᶜ s t ≈ val-instᶜ u t val-congᶜ t s≈u = msub {t = t} (λ { (here refl) → s≈u ; (there m) → refl }) (λ m → refl) refl comp-congᵛ : (t : ⌞ Vs ⌟ᵛ ⨾ ⌞ (Δ ,′ B) ∷ Cs ⌟ᶜ ▹ Γ ⊢ᵛ A) {s u : ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Δ ++ Γ ⊢ᶜ B} → Vs ⨾ Cs ▹ Δ ++ Γ ⊢ᶜ s ≈ u → Vs ⨾ Cs ▹ Γ ⊢ᵛ comp-instᵛ s t ≈ comp-instᵛ u t comp-congᵛ t s≈u = msub {t = t} (λ m → refl) (λ { (here refl) → s≈u ; (there m) → refl }) refl comp-congᶜ : (t : ⌞ Vs ⌟ᵛ ⨾ ⌞ (Δ ,′ B′) ∷ Cs ⌟ᶜ ▹ Γ ⊢ᶜ B) {s u : ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Δ ++ Γ ⊢ᶜ B′} → Vs ⨾ Cs ▹ Δ ++ Γ ⊢ᶜ s ≈ u → Vs ⨾ Cs ▹ Γ ⊢ᶜ comp-instᶜ s t ≈ comp-instᶜ u t comp-congᶜ t s≈u = msub {t = t} (λ m → refl) (λ { (here refl) → s≈u ; (there m) → refl }) refl thmᵛ≈ : {t s : ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᵛ A} (thm : Vs ⨾ Cs ▹ Γ ⊢ᵛ t ≈ s) (ρ : All (I Δ) Γ) (ζ : All (λ (Θ ,′ A) → ⌞ Vs′ ⌟ᵛ ⨾ ⌞ Cs′ ⌟ᶜ ▹ Θ ++ Δ ⊢ᵛ A) Vs) (ξ : All (λ (Θ ,′ B) → ⌞ Vs′ ⌟ᵛ ⨾ ⌞ Cs′ ⌟ᶜ ▹ Θ ++ Δ ⊢ᶜ B) Cs) → Vs′ ⨾ Cs′ ▹ Δ ⊢ᵛ msub′ᵛ ζ ξ (ren′ᵛ ρ t) ≈ msub′ᵛ ζ ξ (ren′ᵛ ρ s) thmᵛ≈ thm ρ ζ ξ = msub (λ _ → refl) (λ _ → refl) (ren (lookup ρ) thm) thmᶜ≈ : {t s : ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᶜ B} (thm : Vs ⨾ Cs ▹ Γ ⊢ᶜ t ≈ s) (ρ : All (I Δ) Γ) (ζ : All (λ (Θ ,′ A) → ⌞ Vs′ ⌟ᵛ ⨾ ⌞ Cs′ ⌟ᶜ ▹ Θ ++ Δ ⊢ᵛ A) Vs) (ξ : All (λ (Θ ,′ B) → ⌞ Vs′ ⌟ᵛ ⨾ ⌞ Cs′ ⌟ᶜ ▹ Θ ++ Δ ⊢ᶜ B) Cs) → Vs′ ⨾ Cs′ ▹ Δ ⊢ᶜ msub′ᶜ ζ ξ (ren′ᶜ ρ t) ≈ msub′ᶜ ζ ξ (ren′ᶜ ρ s) thmᶜ≈ thm ρ ζ ξ = msub (λ _ → refl) (λ _ → refl) (ren (lookup ρ) thm) axᵛ≈ : {t s : ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ [] ⊢ᵛ A} (ax : Vs ⨾ Cs ▹⊢ᵛ t ≋ s) (ζ : All (λ (Δ ,′ A) → ⌞ Vs′ ⌟ᵛ ⨾ ⌞ Cs′ ⌟ᶜ ▹ Δ ++ Γ ⊢ᵛ A) Vs) (ξ : All (λ (Δ ,′ B) → ⌞ Vs′ ⌟ᵛ ⨾ ⌞ Cs′ ⌟ᶜ ▹ Δ ++ Γ ⊢ᶜ B) Cs) → Vs′ ⨾ Cs′ ▹ Γ ⊢ᵛ msub′ᵛ ζ ξ (ren′ᵛ [] t) ≈ msub′ᵛ ζ ξ (ren′ᵛ [] s) axᵛ≈ ax = thmᵛ≈ (axiom ax) [] axᶜ≈ : {t s : ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ [] ⊢ᶜ B} (ax : Vs ⨾ Cs ▹⊢ᶜ t ≋ s) (ζ : All (λ (Δ ,′ A) → ⌞ Vs′ ⌟ᵛ ⨾ ⌞ Cs′ ⌟ᶜ ▹ Δ ++ Γ ⊢ᵛ A) Vs) (ξ : All (λ (Δ ,′ B) → ⌞ Vs′ ⌟ᵛ ⨾ ⌞ Cs′ ⌟ᶜ ▹ Δ ++ Γ ⊢ᶜ B) Cs) → Vs′ ⨾ Cs′ ▹ Γ ⊢ᶜ msub′ᶜ ζ ξ (ren′ᶜ [] t) ≈ msub′ᶜ ζ ξ (ren′ᶜ [] s) axᶜ≈ ax = thmᶜ≈ (axiom ax) []