1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
{-# OPTIONS --safe #-}
module CBPV.Equality where
open import Data.List using (List; []; _∷_; _++_)
open import Data.List.Membership.Propositional using (_∈_)
open import Data.List.Relation.Unary.All using (All; _∷_; []; lookup)
open import Data.List.Relation.Unary.Any using (here; there)
open import Data.Product using () renaming (_×_ to _×′_; _,_ to _,′_)
open import Level using (0ℓ)
open import Relation.Binary using (Rel; _⇒_; _=[_]⇒_; Reflexive; Symmetric; Transitive; Setoid)
open import Relation.Binary.PropositionalEquality using (refl)
import Relation.Binary.Reasoning.Setoid as SetoidReasoning
open import CBPV.Axiom
open import CBPV.Family
open import CBPV.Term
open import CBPV.Type
private
variable
Vs Vs′ : List (Context ×′ ValType)
Cs Cs′ : List (Context ×′ CompType)
Γ Δ : Context
A A′ : ValType
B B′ : CompType
infix 0 _⨾_▹_⊢ᵛ_≈_ _⨾_▹_⊢ᶜ_≈_
data _⨾_▹_⊢ᵛ_≈_ : ∀ Vs Cs Γ {A} → Rel (⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᵛ A) 0ℓ
data _⨾_▹_⊢ᶜ_≈_ : ∀ Vs Cs Γ {B} → Rel (⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᶜ B) 0ℓ
data _⨾_▹_⊢ᵛ_≈_ where
refl : Reflexive {A = ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᵛ A} (Vs ⨾ Cs ▹ Γ ⊢ᵛ_≈_)
sym : Symmetric {A = ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᵛ A} (Vs ⨾ Cs ▹ Γ ⊢ᵛ_≈_)
trans : Transitive {A = ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᵛ A} (Vs ⨾ Cs ▹ Γ ⊢ᵛ_≈_)
axiom : (_⨾_▹⊢ᵛ_≋_ Vs Cs {A}) ⇒ (Vs ⨾ Cs ▹ [] ⊢ᵛ_≈_)
ren : (ρ : Γ ~[ I ]↝ᵛ Δ) → (Vs ⨾ Cs ▹ Γ ⊢ᵛ_≈_) =[ renᵛ {A = A} ρ ]⇒ (Vs ⨾ Cs ▹ Δ ⊢ᵛ_≈_)
msub :
{val₁ val₂ : ⌞ Vs ⌟ᵛ ⇒ᵛ δᵛ Γ (⌞ Vs′ ⌟ᵛ ⨾ ⌞ Cs′ ⌟ᶜ ▹_⊢ᵛ_)}
{comp₁ comp₂ : ⌞ Cs ⌟ᶜ ⇒ᶜ δᶜ Γ (⌞ Vs′ ⌟ᵛ ⨾ ⌞ Cs′ ⌟ᶜ ▹_⊢ᶜ_)}
{t u : ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᵛ A} →
(∀ {A Δ} → (m : (Δ ,′ A) ∈ Vs) → Vs′ ⨾ Cs′ ▹ Δ ++ Γ ⊢ᵛ val₁ m ≈ val₂ m) →
(∀ {B Δ} → (m : (Δ ,′ B) ∈ Cs) → Vs′ ⨾ Cs′ ▹ Δ ++ Γ ⊢ᶜ comp₁ m ≈ comp₂ m) →
Vs ⨾ Cs ▹ Γ ⊢ᵛ t ≈ u →
Vs′ ⨾ Cs′ ▹ Γ ⊢ᵛ msubᵛ val₁ comp₁ t ≈ msubᵛ val₂ comp₂ u
data _⨾_▹_⊢ᶜ_≈_ where
refl : Reflexive {A = ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᶜ B} (Vs ⨾ Cs ▹ Γ ⊢ᶜ_≈_)
sym : Symmetric {A = ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᶜ B} (Vs ⨾ Cs ▹ Γ ⊢ᶜ_≈_)
trans : Transitive {A = ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᶜ B} (Vs ⨾ Cs ▹ Γ ⊢ᶜ_≈_)
axiom : (_⨾_▹⊢ᶜ_≋_ Vs Cs {B}) ⇒ (Vs ⨾ Cs ▹ [] ⊢ᶜ_≈_)
ren : (ρ : Γ ~[ I ]↝ᵛ Δ) → (Vs ⨾ Cs ▹ Γ ⊢ᶜ_≈_) =[ renᶜ {B = B} ρ ]⇒ (Vs ⨾ Cs ▹ Δ ⊢ᶜ_≈_)
msub :
{val₁ val₂ : ⌞ Vs ⌟ᵛ ⇒ᵛ δᵛ Γ (⌞ Vs′ ⌟ᵛ ⨾ ⌞ Cs′ ⌟ᶜ ▹_⊢ᵛ_)}
{comp₁ comp₂ : ⌞ Cs ⌟ᶜ ⇒ᶜ δᶜ Γ (⌞ Vs′ ⌟ᵛ ⨾ ⌞ Cs′ ⌟ᶜ ▹_⊢ᶜ_)}
{t u : ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᶜ B} →
(∀ {A Δ} → (m : (Δ ,′ A) ∈ Vs) → Vs′ ⨾ Cs′ ▹ Δ ++ Γ ⊢ᵛ val₁ m ≈ val₂ m) →
(∀ {B Δ} → (m : (Δ ,′ B) ∈ Cs) → Vs′ ⨾ Cs′ ▹ Δ ++ Γ ⊢ᶜ comp₁ m ≈ comp₂ m) →
Vs ⨾ Cs ▹ Γ ⊢ᶜ t ≈ u →
Vs′ ⨾ Cs′ ▹ Γ ⊢ᶜ msubᶜ val₁ comp₁ t ≈ msubᶜ val₂ comp₂ u
≈ᵛ-setoid :
(Vs : List (Context ×′ ValType)) (Cs : List (Context ×′ CompType)) (Γ : Context) (A : ValType) →
Setoid 0ℓ 0ℓ
≈ᵛ-setoid Vs Cs Γ A = record
{ Carrier = ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᵛ A
; _≈_ = Vs ⨾ Cs ▹ Γ ⊢ᵛ_≈_
; isEquivalence = record { refl = refl ; sym = sym ; trans = trans }
}
≈ᶜ-setoid :
(Vs : List (Context ×′ ValType)) (Cs : List (Context ×′ CompType)) (Γ : Context) (B : CompType) →
Setoid 0ℓ 0ℓ
≈ᶜ-setoid Vs Cs Γ B = record
{ Carrier = ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᶜ B
; _≈_ = Vs ⨾ Cs ▹ Γ ⊢ᶜ_≈_
; isEquivalence = record { refl = refl ; sym = sym ; trans = trans }
}
module ValReasoning {Vs} {Cs} {Γ} {A} = SetoidReasoning (≈ᵛ-setoid Vs Cs Γ A)
module CompReasoning {Vs} {Cs} {Γ} {B} = SetoidReasoning (≈ᶜ-setoid Vs Cs Γ B)
-- Congruence
val-congᵛ :
(t : ⌞ (Δ ,′ A′) ∷ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᵛ A)
{s u : ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Δ ++ Γ ⊢ᵛ A′} →
Vs ⨾ Cs ▹ Δ ++ Γ ⊢ᵛ s ≈ u →
Vs ⨾ Cs ▹ Γ ⊢ᵛ val-instᵛ s t ≈ val-instᵛ u t
val-congᵛ t s≈u =
msub {t = t}
(λ
{ (here refl) → s≈u
; (there m) → refl
})
(λ m → refl)
refl
val-congᶜ :
(t : ⌞ (Δ ,′ A) ∷ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᶜ B)
{s u : ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Δ ++ Γ ⊢ᵛ A} →
Vs ⨾ Cs ▹ Δ ++ Γ ⊢ᵛ s ≈ u →
Vs ⨾ Cs ▹ Γ ⊢ᶜ val-instᶜ s t ≈ val-instᶜ u t
val-congᶜ t s≈u =
msub {t = t}
(λ
{ (here refl) → s≈u
; (there m) → refl
})
(λ m → refl)
refl
comp-congᵛ :
(t : ⌞ Vs ⌟ᵛ ⨾ ⌞ (Δ ,′ B) ∷ Cs ⌟ᶜ ▹ Γ ⊢ᵛ A)
{s u : ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Δ ++ Γ ⊢ᶜ B} →
Vs ⨾ Cs ▹ Δ ++ Γ ⊢ᶜ s ≈ u →
Vs ⨾ Cs ▹ Γ ⊢ᵛ comp-instᵛ s t ≈ comp-instᵛ u t
comp-congᵛ t s≈u =
msub {t = t}
(λ m → refl)
(λ
{ (here refl) → s≈u
; (there m) → refl
})
refl
comp-congᶜ :
(t : ⌞ Vs ⌟ᵛ ⨾ ⌞ (Δ ,′ B′) ∷ Cs ⌟ᶜ ▹ Γ ⊢ᶜ B)
{s u : ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Δ ++ Γ ⊢ᶜ B′} →
Vs ⨾ Cs ▹ Δ ++ Γ ⊢ᶜ s ≈ u →
Vs ⨾ Cs ▹ Γ ⊢ᶜ comp-instᶜ s t ≈ comp-instᶜ u t
comp-congᶜ t s≈u =
msub {t = t}
(λ m → refl)
(λ
{ (here refl) → s≈u
; (there m) → refl
})
refl
thmᵛ≈ :
{t s : ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᵛ A}
(thm : Vs ⨾ Cs ▹ Γ ⊢ᵛ t ≈ s)
(ρ : All (I Δ) Γ)
(ζ : All (λ (Θ ,′ A) → ⌞ Vs′ ⌟ᵛ ⨾ ⌞ Cs′ ⌟ᶜ ▹ Θ ++ Δ ⊢ᵛ A) Vs)
(ξ : All (λ (Θ ,′ B) → ⌞ Vs′ ⌟ᵛ ⨾ ⌞ Cs′ ⌟ᶜ ▹ Θ ++ Δ ⊢ᶜ B) Cs) →
Vs′ ⨾ Cs′ ▹ Δ ⊢ᵛ msub′ᵛ ζ ξ (ren′ᵛ ρ t) ≈ msub′ᵛ ζ ξ (ren′ᵛ ρ s)
thmᵛ≈ thm ρ ζ ξ = msub (λ _ → refl) (λ _ → refl) (ren (lookup ρ) thm)
thmᶜ≈ :
{t s : ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ Γ ⊢ᶜ B}
(thm : Vs ⨾ Cs ▹ Γ ⊢ᶜ t ≈ s)
(ρ : All (I Δ) Γ)
(ζ : All (λ (Θ ,′ A) → ⌞ Vs′ ⌟ᵛ ⨾ ⌞ Cs′ ⌟ᶜ ▹ Θ ++ Δ ⊢ᵛ A) Vs)
(ξ : All (λ (Θ ,′ B) → ⌞ Vs′ ⌟ᵛ ⨾ ⌞ Cs′ ⌟ᶜ ▹ Θ ++ Δ ⊢ᶜ B) Cs) →
Vs′ ⨾ Cs′ ▹ Δ ⊢ᶜ msub′ᶜ ζ ξ (ren′ᶜ ρ t) ≈ msub′ᶜ ζ ξ (ren′ᶜ ρ s)
thmᶜ≈ thm ρ ζ ξ = msub (λ _ → refl) (λ _ → refl) (ren (lookup ρ) thm)
axᵛ≈ :
{t s : ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ [] ⊢ᵛ A}
(ax : Vs ⨾ Cs ▹⊢ᵛ t ≋ s)
(ζ : All (λ (Δ ,′ A) → ⌞ Vs′ ⌟ᵛ ⨾ ⌞ Cs′ ⌟ᶜ ▹ Δ ++ Γ ⊢ᵛ A) Vs)
(ξ : All (λ (Δ ,′ B) → ⌞ Vs′ ⌟ᵛ ⨾ ⌞ Cs′ ⌟ᶜ ▹ Δ ++ Γ ⊢ᶜ B) Cs) →
Vs′ ⨾ Cs′ ▹ Γ ⊢ᵛ msub′ᵛ ζ ξ (ren′ᵛ [] t) ≈ msub′ᵛ ζ ξ (ren′ᵛ [] s)
axᵛ≈ ax = thmᵛ≈ (axiom ax) []
axᶜ≈ :
{t s : ⌞ Vs ⌟ᵛ ⨾ ⌞ Cs ⌟ᶜ ▹ [] ⊢ᶜ B}
(ax : Vs ⨾ Cs ▹⊢ᶜ t ≋ s)
(ζ : All (λ (Δ ,′ A) → ⌞ Vs′ ⌟ᵛ ⨾ ⌞ Cs′ ⌟ᶜ ▹ Δ ++ Γ ⊢ᵛ A) Vs)
(ξ : All (λ (Δ ,′ B) → ⌞ Vs′ ⌟ᵛ ⨾ ⌞ Cs′ ⌟ᶜ ▹ Δ ++ Γ ⊢ᶜ B) Cs) →
Vs′ ⨾ Cs′ ▹ Γ ⊢ᶜ msub′ᶜ ζ ξ (ren′ᶜ [] t) ≈ msub′ᶜ ζ ξ (ren′ᶜ [] s)
axᶜ≈ ax = thmᶜ≈ (axiom ax) []
|