diff options
author | Chloe Brown <chloe.brown.00@outlook.com> | 2021-04-17 13:51:47 +0100 |
---|---|---|
committer | Chloe Brown <chloe.brown.00@outlook.com> | 2021-04-17 13:51:47 +0100 |
commit | a5e00b31b873f7deaefa7cb0f60595452f40a57c (patch) | |
tree | d397635ca8c90f0d3483fc10557e9a0682d47f35 /src/Cfe/Context/Base.agda | |
parent | 7cc5e28370079de3aab98ab536ae601392c31065 (diff) |
Rework Context one last time.
Diffstat (limited to 'src/Cfe/Context/Base.agda')
-rw-r--r-- | src/Cfe/Context/Base.agda | 118 |
1 files changed, 44 insertions, 74 deletions
diff --git a/src/Cfe/Context/Base.agda b/src/Cfe/Context/Base.agda index a428d3c..e152790 100644 --- a/src/Cfe/Context/Base.agda +++ b/src/Cfe/Context/Base.agda @@ -6,91 +6,61 @@ module Cfe.Context.Base {c ℓ} (over : Setoid c ℓ) where -open import Cfe.Type over -open import Data.Empty -open import Data.Fin as F hiding (cast) -open import Data.Fin.Properties hiding (≤-trans) -open import Data.Nat as ℕ hiding (_⊔_) -open import Data.Nat.Properties as NP -open import Data.Product -open import Data.Vec +open import Cfe.Fin +open import Cfe.Type over using (Type) renaming (_≈_ to _≈ᵗ_; _≤_ to _≤ᵗ_) +open import Data.Fin hiding (_+_) renaming (zero to #0; suc to 1+_; _≤_ to _≤ᶠ_) +open import Data.Fin.Properties using (toℕ-fromℕ; toℕ-inject₁) +open import Data.Nat using (ℕ; suc; _∸_; _+_) +open import Data.Nat.Properties using (+-suc) +open import Data.Product using (_×_) +open import Data.Vec using (Vec; []; insert) +open import Data.Vec.Relation.Binary.Pointwise.Inductive using (Pointwise) open import Level renaming (suc to lsuc) -open import Relation.Binary.PropositionalEquality -open import Relation.Nullary +open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; module ≡-Reasoning) +open import Relation.Nullary.Decidable using (True) -drop′ : ∀ {a A n m i} → m ℕ.≤ n → i ℕ.≤ m → Vec {a} A (m ℕ.+ (n ∸ m)) → Vec A (n ∸ i) -drop′ z≤n z≤n xs = xs -drop′ (s≤s m≤n) z≤n (x ∷ xs) = x ∷ drop′ m≤n z≤n xs -drop′ (s≤s m≤n) (s≤s i≤m) (x ∷ xs) = drop′ m≤n i≤m xs +private + variable + n : ℕ -take′ : ∀ {a A m i} → i ℕ.≤ m → Vec {a} A m → Vec A i -take′ z≤n xs = [] -take′ (s≤s i≤m) (x ∷ xs) = x ∷ (take′ i≤m xs) +------------------------------------------------------------------------ +-- Definitions -reduce≥′ : ∀ {n m i} → m ℕ.≤ n → toℕ {n} i ≥ m → Fin (n ∸ m) -reduce≥′ {i = i} z≤n i≥m = i -reduce≥′ {i = suc i} (s≤s m≤n) (s≤s i≥m) = reduce≥′ m≤n i≥m +infix 4 _⊐_ -reduce≥′-mono : ∀ {n m i j} → (m≤n : m ℕ.≤ n) → (i≥m : toℕ i ≥ m) → (i≤j : i F.≤ j) → reduce≥′ m≤n i≥m F.≤ reduce≥′ m≤n (≤-trans i≥m i≤j) -reduce≥′-mono z≤n i≥m i≤j = i≤j -reduce≥′-mono {i = suc i} {suc j} (s≤s m≤n) (s≤s i≥m) (s≤s i≤j) = reduce≥′-mono m≤n i≥m i≤j +record Context n : Set (c ⊔ lsuc ℓ) where + constructor _⊐_ + field + Γ,Δ : Vec (Type ℓ ℓ) n + guard : Fin (suc n) -insert′ : ∀ {a A n m} → Vec {a} A (n ∸ suc m) → suc m ℕ.≤ n → Fin (n ∸ m) → A → Vec A (n ∸ m) -insert′ xs (s≤s z≤n) i x = insert xs i x -insert′ xs (s≤s (s≤s m≤n)) i x = insert′ xs (s≤s m≤n) i x +open Context public -rotate : ∀ {a A n} {i j : Fin n} → Vec {a} A n → i F.≤ j → Vec A n -rotate {i = F.zero} {j} (x ∷ xs) z≤n = insert xs j x -rotate {i = suc i} {suc j} (x ∷ xs) (s≤s i≤j) = x ∷ (rotate xs i≤j) +∙,∙ : Context 0 +∙,∙ = [] ⊐ #0 -remove′ : ∀ {a A n} → Vec {a} A n → Fin n → Vec A (ℕ.pred n) -remove′ (x ∷ xs) F.zero = xs -remove′ (x ∷ y ∷ xs) (suc i) = x ∷ remove′ (y ∷ xs) i +------------------------------------------------------------------------ +-- Insertions -record Context n : Set (c ⊔ lsuc ℓ) where - field - m : ℕ - m≤n : m ℕ.≤ n - Γ : Vec (Type ℓ ℓ) (n ∸ m) - Δ : Vec (Type ℓ ℓ) m +wkn₂ : ∀ (ctx : Context n) → Fin< (1+ guard ctx) → Type ℓ ℓ → Context (suc n) +wkn₂ (Γ,Δ ⊐ g) i τ = insert Γ,Δ (inject<! i) τ ⊐ 1+ g -∙,∙ : Context 0 -∙,∙ = record { m≤n = z≤n ; Γ = [] ; Δ = [] } - -toVec : ∀ {n} → Context n → Vec (Type ℓ ℓ) n -toVec record { m = .0 ; m≤n = _ ; Γ = Γ ; Δ = [] } = Γ -toVec {suc n} record { m = .(suc _) ; m≤n = (s≤s m≤n) ; Γ = Γ ; Δ = (x ∷ Δ) } = x ∷ toVec (record { m≤n = m≤n ; Γ = Γ ; Δ = Δ }) - -wkn₁ : ∀ {n i} → (Γ,Δ : Context n) → toℕ {suc n} i ≥ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n) -wkn₁ Γ,Δ i≥m τ = record - { m≤n = ≤-step m≤n - ; Γ = insert′ Γ (s≤s m≤n) (reduce≥′ (≤-step m≤n) i≥m) τ - ; Δ = Δ - } - where - open Context Γ,Δ - -wkn₂ : ∀ {n i} → (Γ,Δ : Context n) → toℕ {suc n} i ℕ.≤ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n) -wkn₂ Γ,Δ i≤m τ = record - { m≤n = s≤s m≤n - ; Γ = Γ - ; Δ = insert Δ (fromℕ< (s≤s i≤m)) τ - } - where - open Context Γ,Δ +wkn₁ : ∀ (ctx : Context n) → Fin> (guard ctx) → Type ℓ ℓ → Context (suc n) +wkn₁ (Γ,Δ ⊐ g) i τ = insert Γ,Δ (raise> i) τ ⊐ inject₁ g + +------------------------------------------------------------------------ +-- Modifications + +shift : ∀ (ctx : Context n) → Fin< (1+ guard ctx) → Context n +shift (Γ,Δ ⊐ _) i = Γ,Δ ⊐ inject<! i -shift≤ : ∀ {n i} (Γ,Δ : Context n) → i ℕ.≤ Context.m Γ,Δ → Context n -shift≤ {n} {i} record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i≤m = record - { m≤n = ≤-trans i≤m m≤n - ; Γ = drop′ m≤n i≤m (Δ ++ Γ) - ; Δ = take′ i≤m Δ - } +------------------------------------------------------------------------ +-- Relations -cons : ∀ {n} → Context n → Type ℓ ℓ → Context (suc n) -cons Γ,Δ τ = wkn₂ Γ,Δ z≤n τ +-- infix 4 _≈_ _≤_ -shift : ∀ {n} → Context n → Context n -shift Γ,Δ = shift≤ Γ,Δ z≤n +_≈_ : Rel (Context n) _ +(Γ,Δ₁ ⊐ g₁) ≈ (Γ,Δ₂ ⊐ g₂) = g₁ ≡ g₂ × Pointwise _≈ᵗ_ Γ,Δ₁ Γ,Δ₂ -_≋_ : ∀ {n} → Rel (Context n) (c ⊔ lsuc ℓ) -Γ,Δ ≋ Γ,Δ′ = Σ (Context.m Γ,Δ ≡ Context.m Γ,Δ′) λ {refl → Context.Γ Γ,Δ ≡ Context.Γ Γ,Δ′ × Context.Δ Γ,Δ ≡ Context.Δ Γ,Δ′} +_≤_ : Rel (Context n) _ +(Γ,Δ₁ ⊐ g₁) ≤ (Γ,Δ₂ ⊐ g₂) = g₂ ≤ᶠ g₁ × Pointwise _≤ᵗ_ Γ,Δ₁ Γ,Δ₂ |