summaryrefslogtreecommitdiff
path: root/src/Cfe/Context/Base.agda
diff options
context:
space:
mode:
authorChloe Brown <chloe.brown.00@outlook.com>2021-03-23 12:19:30 +0000
committerChloe Brown <chloe.brown.00@outlook.com>2021-03-23 12:19:30 +0000
commita92f724a46a78af74121c44bbb06c4ec51f9555e (patch)
tree11de6bc766c48d3e815bcfff529a6ec25e69a7e3 /src/Cfe/Context/Base.agda
parent9e89f36e3fc6210b270d673c30691530015278fb (diff)
Replace transfer with shift.
Prove substitution in the unguarded context.
Diffstat (limited to 'src/Cfe/Context/Base.agda')
-rw-r--r--src/Cfe/Context/Base.agda113
1 files changed, 34 insertions, 79 deletions
diff --git a/src/Cfe/Context/Base.agda b/src/Cfe/Context/Base.agda
index 1a37aa0..6b34a67 100644
--- a/src/Cfe/Context/Base.agda
+++ b/src/Cfe/Context/Base.agda
@@ -18,36 +18,34 @@ open import Level renaming (suc to lsuc)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
-≤-recomputable : ∀ {m n} → .(m ℕ.≤ n) → m ℕ.≤ n
-≤-recomputable {ℕ.zero} {n} m≤n = z≤n
-≤-recomputable {suc m} {suc n} m≤n = s≤s (≤-recomputable (pred-mono m≤n))
+drop′ : ∀ {a A n m i} → m ℕ.≤ n → i ℕ.≤ m → Vec {a} A (m ℕ.+ (n ∸ m)) → Vec A (n ∸ i)
+drop′ z≤n z≤n xs = xs
+drop′ (s≤s m≤n) z≤n (x ∷ xs) = x ∷ drop′ m≤n z≤n xs
+drop′ (s≤s m≤n) (s≤s i≤m) (x ∷ xs) = drop′ m≤n i≤m xs
-cast : ∀ {a A m n} → .(m ≡ n) → Vec {a} A m → Vec {a} A n
-cast {m = 0} {0} eq [] = []
-cast {m = suc _} {suc n} eq (x ∷ xs) = x ∷ cast (cong ℕ.pred eq) xs
+take′ : ∀ {a A m i} → i ℕ.≤ m → Vec {a} A m → Vec A i
+take′ z≤n xs = []
+take′ (s≤s i≤m) (x ∷ xs) = x ∷ (take′ i≤m xs)
-reduce≥′ : ∀ {m n} → .(m ℕ.≤ n) → (i : Fin n) → .(_ : toℕ i ≥ m) → Fin (n ∸ m)
-reduce≥′ {ℕ.zero} {n} m≤n i i≥m = i
-reduce≥′ {suc m} {suc n} m≤n (suc i) i≥m = reduce≥′ (pred-mono m≤n) i (pred-mono i≥m)
+reduce≥′ : ∀ {n m i} → m ℕ.≤ n → toℕ {n} i ≥ m → Fin (n ∸ m)
+reduce≥′ {i = i} z≤n i≥m = i
+reduce≥′ {i = suc i} (s≤s m≤n) (s≤s i≥m) = reduce≥′ m≤n i≥m
-reduce≥′-mono : ∀ {m n} → .(m≤n : m ℕ.≤ n) → (i j : Fin n) → (i≥m : toℕ i ≥ m) → (i≤j : i F.≤ j) → reduce≥′ m≤n i i≥m F.≤ reduce≥′ m≤n j (≤-trans i≥m i≤j)
-reduce≥′-mono {ℕ.zero} {n} m≤n i j i≥m i≤j = i≤j
-reduce≥′-mono {suc m} {suc n} m≤n (suc i) (suc j) (s≤s i≥m) (s≤s i≤j) = reduce≥′-mono (pred-mono m≤n) i j i≥m i≤j
+reduce≥′-mono : ∀ {n m i j} → (m≤n : m ℕ.≤ n) → (i≥m : toℕ i ≥ m) → (i≤j : i F.≤ j) → reduce≥′ m≤n i≥m F.≤ reduce≥′ m≤n (≤-trans i≥m i≤j)
+reduce≥′-mono z≤n i≥m i≤j = i≤j
+reduce≥′-mono {i = suc i} {suc j} (s≤s m≤n) (s≤s i≥m) (s≤s i≤j) = reduce≥′-mono m≤n i≥m i≤j
-insert′ : ∀ {a A m n} → Vec {a} A (n ∸ m) → .(m ℕ.≤ n) → m ≢ 0 → (i : Fin (n ∸ ℕ.pred m)) → A → Vec A (n ∸ ℕ.pred m)
-insert′ {a} {A} {ℕ.zero} xs m≤n m≢0 i x = ⊥-elim (m≢0 refl)
-insert′ {a} {A} {suc ℕ.zero} xs _ _ F.zero x = x ∷ xs
-insert′ {a} {A} {suc ℕ.zero} (y ∷ xs) _ _ (suc i) x = y ∷ insert′ xs (s≤s z≤n) (λ ()) i x
-insert′ {a} {A} {suc (suc m)} {suc ℕ.zero} xs m≤n _ i x = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) (≤-recomputable m≤n))
-insert′ {a} {A} {suc (suc m)} {suc (suc _)} xs m≤n _ i x = insert′ {m = suc m} xs (pred-mono m≤n) (λ ()) i x
+insert′ : ∀ {a A n m} → Vec {a} A (n ∸ suc m) → suc m ℕ.≤ n → Fin (n ∸ m) → A → Vec A (n ∸ m)
+insert′ xs (s≤s z≤n) i x = insert xs i x
+insert′ xs (s≤s (s≤s m≤n)) i x = insert′ xs (s≤s m≤n) i x
-rotate : ∀ {a A n} → (i j : Fin n) → .(i F.≤ j) → Vec {a} A n → Vec A n
-rotate F.zero j i≤j (x ∷ xs) = insert xs j x
-rotate (suc i) (suc j) i≤j (x ∷ xs) = x ∷ (rotate i j (pred-mono i≤j) xs)
+rotate : ∀ {a A n} {i j : Fin n} → Vec {a} A n → i F.≤ j → Vec A n
+rotate {i = F.zero} {j} (x ∷ xs) z≤n = insert xs j x
+rotate {i = suc i} {suc j} (x ∷ xs) (s≤s i≤j) = x ∷ (rotate xs i≤j)
-remove′ : ∀ {a A m} → Vec {a} A m → .(m ≢ 0) → Fin m → Vec A (ℕ.pred m)
-remove′ (x ∷ xs) m≢0 F.zero = xs
-remove′ (x ∷ y ∷ xs) m≢0 (suc i) = x ∷ remove′ (y ∷ xs) (λ ()) i
+remove′ : ∀ {a A n} → Vec {a} A n → Fin n → Vec A (ℕ.pred n)
+remove′ (x ∷ xs) F.zero = xs
+remove′ (x ∷ y ∷ xs) (suc i) = x ∷ remove′ (y ∷ xs) i
record Context n : Set (c ⊔ lsuc ℓ) where
field
@@ -56,17 +54,17 @@ record Context n : Set (c ⊔ lsuc ℓ) where
Γ : Vec (Type ℓ ℓ) (n ∸ m)
Δ : Vec (Type ℓ ℓ) m
-wkn₁ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → (toℕ i ≥ Context.m Γ,Δ) → Type ℓ ℓ → Context (suc n)
-wkn₁ Γ,Δ i i≥m τ = record
+wkn₁ : ∀ {n i} → (Γ,Δ : Context n) → toℕ {suc n} i ≥ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n)
+wkn₁ Γ,Δ i≥m τ = record
{ m≤n = ≤-step m≤n
- ; Γ = cast (sym (+-∸-assoc 1 m≤n)) (insert Γ (F.cast (+-∸-assoc 1 m≤n) (reduce≥′ (≤-step m≤n) i i≥m)) τ)
+ ; Γ = insert′ Γ (s≤s m≤n) (reduce≥′ (≤-step m≤n) i≥m) τ
; Δ = Δ
}
where
open Context Γ,Δ
-wkn₂ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → toℕ i ℕ.≤ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n)
-wkn₂ Γ,Δ i i≤m τ = record
+wkn₂ : ∀ {n i} → (Γ,Δ : Context n) → toℕ {suc n} i ℕ.≤ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n)
+wkn₂ Γ,Δ i≤m τ = record
{ m≤n = s≤s m≤n
; Γ = Γ
; Δ = insert Δ (fromℕ< (s≤s i≤m)) τ
@@ -74,61 +72,18 @@ wkn₂ Γ,Δ i i≤m τ = record
where
open Context Γ,Δ
-rotate₁ : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → toℕ i ≥ Context.m Γ,Δ → (i F.≤ j) → Context n
-rotate₁ {n} Γ,Δ i j i≥m i≤j = record
- { m≤n = m≤n
- ; Γ = rotate (reduce≥′ m≤n i i≥m) (reduce≥′ m≤n j (≤-trans i≥m i≤j)) (reduce≥′-mono m≤n i j i≥m i≤j) Γ
- ; Δ = Δ
+shift≤ : ∀ {n i} (Γ,Δ : Context n) → i ℕ.≤ Context.m Γ,Δ → Context n
+shift≤ {n} {i} record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i≤m = record
+ { m≤n = ≤-trans i≤m m≤n
+ ; Γ = drop′ m≤n i≤m (Δ ++ Γ)
+ ; Δ = take′ i≤m Δ
}
- where
- open Context Γ,Δ
-
-rotate₂ : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → (toℕ j ℕ.< Context.m Γ,Δ) → (i F.≤ j) → Context n
-rotate₂ {n} Γ,Δ i j j<m i≤j = record
- { m≤n = m≤n
- ; Γ = Γ
- ; Δ = rotate
- (fromℕ< (≤-trans (s≤s i≤j) j<m))
- (fromℕ< j<m)
- (begin
- toℕ (fromℕ< (≤-trans (s≤s i≤j) j<m)) ≡⟨ toℕ-fromℕ< (≤-trans (s≤s i≤j) j<m) ⟩
- toℕ i ≤⟨ i≤j ⟩
- toℕ j ≡˘⟨ toℕ-fromℕ< j<m ⟩
- toℕ (fromℕ< j<m) ∎)
- Δ
- }
- where
- open Context Γ,Δ
- open ≤-Reasoning
-
-transfer : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → (toℕ i ℕ.< Context.m Γ,Δ) → (suc (toℕ j) ≥ Context.m Γ,Δ) → Context n
-transfer {n} Γ,Δ i j i<m 1+j≥m with Context.m Γ,Δ ℕ.≟ 0
-... | yes m≡0 = ⊥-elim (m<n⇒n≢0 i<m m≡0)
-... | no m≢0 = record
- { m≤n = pred-mono (≤-step m≤n)
- ; Γ = insert′ Γ m≤n m≢0 (reduce≥′ (pred-mono (≤-step m≤n)) j (pred-mono 1+j≥m)) (lookup Δ (fromℕ< i<m))
- ; Δ = remove′ Δ m≢0 (fromℕ< i<m)
- }
- where
- open Context Γ,Δ
cons : ∀ {n} → Context n → Type ℓ ℓ → Context (suc n)
-cons {n} Γ,Δ τ = record
- { m≤n = s≤s m≤n
- ; Γ = Γ
- ; Δ = τ ∷ Δ
- }
- where
- open Context Γ,Δ
+cons Γ,Δ τ = wkn₂ Γ,Δ z≤n τ
shift : ∀ {n} → Context n → Context n
-shift {n} Γ,Δ = record
- { m≤n = z≤n
- ; Γ = cast (trans (sym (+-∸-assoc m m≤n)) (m+n∸m≡n m n)) (Δ ++ Γ)
- ; Δ = []
- }
- where
- open Context Γ,Δ
+shift Γ,Δ = shift≤ Γ,Δ z≤n
_≋_ : ∀ {n} → Rel (Context n) (c ⊔ lsuc ℓ)
Γ,Δ ≋ Γ,Δ′ = Σ (Context.m Γ,Δ ≡ Context.m Γ,Δ′) λ {refl → Context.Γ Γ,Δ ≡ Context.Γ Γ,Δ′ × Context.Δ Γ,Δ ≡ Context.Δ Γ,Δ′}