diff options
author | Chloe Brown <chloe.brown.00@outlook.com> | 2021-03-23 12:19:30 +0000 |
---|---|---|
committer | Chloe Brown <chloe.brown.00@outlook.com> | 2021-03-23 12:19:30 +0000 |
commit | a92f724a46a78af74121c44bbb06c4ec51f9555e (patch) | |
tree | 11de6bc766c48d3e815bcfff529a6ec25e69a7e3 /src/Cfe/Context/Base.agda | |
parent | 9e89f36e3fc6210b270d673c30691530015278fb (diff) |
Replace transfer with shift.
Prove substitution in the unguarded context.
Diffstat (limited to 'src/Cfe/Context/Base.agda')
-rw-r--r-- | src/Cfe/Context/Base.agda | 113 |
1 files changed, 34 insertions, 79 deletions
diff --git a/src/Cfe/Context/Base.agda b/src/Cfe/Context/Base.agda index 1a37aa0..6b34a67 100644 --- a/src/Cfe/Context/Base.agda +++ b/src/Cfe/Context/Base.agda @@ -18,36 +18,34 @@ open import Level renaming (suc to lsuc) open import Relation.Binary.PropositionalEquality open import Relation.Nullary -≤-recomputable : ∀ {m n} → .(m ℕ.≤ n) → m ℕ.≤ n -≤-recomputable {ℕ.zero} {n} m≤n = z≤n -≤-recomputable {suc m} {suc n} m≤n = s≤s (≤-recomputable (pred-mono m≤n)) +drop′ : ∀ {a A n m i} → m ℕ.≤ n → i ℕ.≤ m → Vec {a} A (m ℕ.+ (n ∸ m)) → Vec A (n ∸ i) +drop′ z≤n z≤n xs = xs +drop′ (s≤s m≤n) z≤n (x ∷ xs) = x ∷ drop′ m≤n z≤n xs +drop′ (s≤s m≤n) (s≤s i≤m) (x ∷ xs) = drop′ m≤n i≤m xs -cast : ∀ {a A m n} → .(m ≡ n) → Vec {a} A m → Vec {a} A n -cast {m = 0} {0} eq [] = [] -cast {m = suc _} {suc n} eq (x ∷ xs) = x ∷ cast (cong ℕ.pred eq) xs +take′ : ∀ {a A m i} → i ℕ.≤ m → Vec {a} A m → Vec A i +take′ z≤n xs = [] +take′ (s≤s i≤m) (x ∷ xs) = x ∷ (take′ i≤m xs) -reduce≥′ : ∀ {m n} → .(m ℕ.≤ n) → (i : Fin n) → .(_ : toℕ i ≥ m) → Fin (n ∸ m) -reduce≥′ {ℕ.zero} {n} m≤n i i≥m = i -reduce≥′ {suc m} {suc n} m≤n (suc i) i≥m = reduce≥′ (pred-mono m≤n) i (pred-mono i≥m) +reduce≥′ : ∀ {n m i} → m ℕ.≤ n → toℕ {n} i ≥ m → Fin (n ∸ m) +reduce≥′ {i = i} z≤n i≥m = i +reduce≥′ {i = suc i} (s≤s m≤n) (s≤s i≥m) = reduce≥′ m≤n i≥m -reduce≥′-mono : ∀ {m n} → .(m≤n : m ℕ.≤ n) → (i j : Fin n) → (i≥m : toℕ i ≥ m) → (i≤j : i F.≤ j) → reduce≥′ m≤n i i≥m F.≤ reduce≥′ m≤n j (≤-trans i≥m i≤j) -reduce≥′-mono {ℕ.zero} {n} m≤n i j i≥m i≤j = i≤j -reduce≥′-mono {suc m} {suc n} m≤n (suc i) (suc j) (s≤s i≥m) (s≤s i≤j) = reduce≥′-mono (pred-mono m≤n) i j i≥m i≤j +reduce≥′-mono : ∀ {n m i j} → (m≤n : m ℕ.≤ n) → (i≥m : toℕ i ≥ m) → (i≤j : i F.≤ j) → reduce≥′ m≤n i≥m F.≤ reduce≥′ m≤n (≤-trans i≥m i≤j) +reduce≥′-mono z≤n i≥m i≤j = i≤j +reduce≥′-mono {i = suc i} {suc j} (s≤s m≤n) (s≤s i≥m) (s≤s i≤j) = reduce≥′-mono m≤n i≥m i≤j -insert′ : ∀ {a A m n} → Vec {a} A (n ∸ m) → .(m ℕ.≤ n) → m ≢ 0 → (i : Fin (n ∸ ℕ.pred m)) → A → Vec A (n ∸ ℕ.pred m) -insert′ {a} {A} {ℕ.zero} xs m≤n m≢0 i x = ⊥-elim (m≢0 refl) -insert′ {a} {A} {suc ℕ.zero} xs _ _ F.zero x = x ∷ xs -insert′ {a} {A} {suc ℕ.zero} (y ∷ xs) _ _ (suc i) x = y ∷ insert′ xs (s≤s z≤n) (λ ()) i x -insert′ {a} {A} {suc (suc m)} {suc ℕ.zero} xs m≤n _ i x = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) (≤-recomputable m≤n)) -insert′ {a} {A} {suc (suc m)} {suc (suc _)} xs m≤n _ i x = insert′ {m = suc m} xs (pred-mono m≤n) (λ ()) i x +insert′ : ∀ {a A n m} → Vec {a} A (n ∸ suc m) → suc m ℕ.≤ n → Fin (n ∸ m) → A → Vec A (n ∸ m) +insert′ xs (s≤s z≤n) i x = insert xs i x +insert′ xs (s≤s (s≤s m≤n)) i x = insert′ xs (s≤s m≤n) i x -rotate : ∀ {a A n} → (i j : Fin n) → .(i F.≤ j) → Vec {a} A n → Vec A n -rotate F.zero j i≤j (x ∷ xs) = insert xs j x -rotate (suc i) (suc j) i≤j (x ∷ xs) = x ∷ (rotate i j (pred-mono i≤j) xs) +rotate : ∀ {a A n} {i j : Fin n} → Vec {a} A n → i F.≤ j → Vec A n +rotate {i = F.zero} {j} (x ∷ xs) z≤n = insert xs j x +rotate {i = suc i} {suc j} (x ∷ xs) (s≤s i≤j) = x ∷ (rotate xs i≤j) -remove′ : ∀ {a A m} → Vec {a} A m → .(m ≢ 0) → Fin m → Vec A (ℕ.pred m) -remove′ (x ∷ xs) m≢0 F.zero = xs -remove′ (x ∷ y ∷ xs) m≢0 (suc i) = x ∷ remove′ (y ∷ xs) (λ ()) i +remove′ : ∀ {a A n} → Vec {a} A n → Fin n → Vec A (ℕ.pred n) +remove′ (x ∷ xs) F.zero = xs +remove′ (x ∷ y ∷ xs) (suc i) = x ∷ remove′ (y ∷ xs) i record Context n : Set (c ⊔ lsuc ℓ) where field @@ -56,17 +54,17 @@ record Context n : Set (c ⊔ lsuc ℓ) where Γ : Vec (Type ℓ ℓ) (n ∸ m) Δ : Vec (Type ℓ ℓ) m -wkn₁ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → (toℕ i ≥ Context.m Γ,Δ) → Type ℓ ℓ → Context (suc n) -wkn₁ Γ,Δ i i≥m τ = record +wkn₁ : ∀ {n i} → (Γ,Δ : Context n) → toℕ {suc n} i ≥ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n) +wkn₁ Γ,Δ i≥m τ = record { m≤n = ≤-step m≤n - ; Γ = cast (sym (+-∸-assoc 1 m≤n)) (insert Γ (F.cast (+-∸-assoc 1 m≤n) (reduce≥′ (≤-step m≤n) i i≥m)) τ) + ; Γ = insert′ Γ (s≤s m≤n) (reduce≥′ (≤-step m≤n) i≥m) τ ; Δ = Δ } where open Context Γ,Δ -wkn₂ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → toℕ i ℕ.≤ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n) -wkn₂ Γ,Δ i i≤m τ = record +wkn₂ : ∀ {n i} → (Γ,Δ : Context n) → toℕ {suc n} i ℕ.≤ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n) +wkn₂ Γ,Δ i≤m τ = record { m≤n = s≤s m≤n ; Γ = Γ ; Δ = insert Δ (fromℕ< (s≤s i≤m)) τ @@ -74,61 +72,18 @@ wkn₂ Γ,Δ i i≤m τ = record where open Context Γ,Δ -rotate₁ : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → toℕ i ≥ Context.m Γ,Δ → (i F.≤ j) → Context n -rotate₁ {n} Γ,Δ i j i≥m i≤j = record - { m≤n = m≤n - ; Γ = rotate (reduce≥′ m≤n i i≥m) (reduce≥′ m≤n j (≤-trans i≥m i≤j)) (reduce≥′-mono m≤n i j i≥m i≤j) Γ - ; Δ = Δ +shift≤ : ∀ {n i} (Γ,Δ : Context n) → i ℕ.≤ Context.m Γ,Δ → Context n +shift≤ {n} {i} record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i≤m = record + { m≤n = ≤-trans i≤m m≤n + ; Γ = drop′ m≤n i≤m (Δ ++ Γ) + ; Δ = take′ i≤m Δ } - where - open Context Γ,Δ - -rotate₂ : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → (toℕ j ℕ.< Context.m Γ,Δ) → (i F.≤ j) → Context n -rotate₂ {n} Γ,Δ i j j<m i≤j = record - { m≤n = m≤n - ; Γ = Γ - ; Δ = rotate - (fromℕ< (≤-trans (s≤s i≤j) j<m)) - (fromℕ< j<m) - (begin - toℕ (fromℕ< (≤-trans (s≤s i≤j) j<m)) ≡⟨ toℕ-fromℕ< (≤-trans (s≤s i≤j) j<m) ⟩ - toℕ i ≤⟨ i≤j ⟩ - toℕ j ≡˘⟨ toℕ-fromℕ< j<m ⟩ - toℕ (fromℕ< j<m) ∎) - Δ - } - where - open Context Γ,Δ - open ≤-Reasoning - -transfer : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → (toℕ i ℕ.< Context.m Γ,Δ) → (suc (toℕ j) ≥ Context.m Γ,Δ) → Context n -transfer {n} Γ,Δ i j i<m 1+j≥m with Context.m Γ,Δ ℕ.≟ 0 -... | yes m≡0 = ⊥-elim (m<n⇒n≢0 i<m m≡0) -... | no m≢0 = record - { m≤n = pred-mono (≤-step m≤n) - ; Γ = insert′ Γ m≤n m≢0 (reduce≥′ (pred-mono (≤-step m≤n)) j (pred-mono 1+j≥m)) (lookup Δ (fromℕ< i<m)) - ; Δ = remove′ Δ m≢0 (fromℕ< i<m) - } - where - open Context Γ,Δ cons : ∀ {n} → Context n → Type ℓ ℓ → Context (suc n) -cons {n} Γ,Δ τ = record - { m≤n = s≤s m≤n - ; Γ = Γ - ; Δ = τ ∷ Δ - } - where - open Context Γ,Δ +cons Γ,Δ τ = wkn₂ Γ,Δ z≤n τ shift : ∀ {n} → Context n → Context n -shift {n} Γ,Δ = record - { m≤n = z≤n - ; Γ = cast (trans (sym (+-∸-assoc m m≤n)) (m+n∸m≡n m n)) (Δ ++ Γ) - ; Δ = [] - } - where - open Context Γ,Δ +shift Γ,Δ = shift≤ Γ,Δ z≤n _≋_ : ∀ {n} → Rel (Context n) (c ⊔ lsuc ℓ) Γ,Δ ≋ Γ,Δ′ = Σ (Context.m Γ,Δ ≡ Context.m Γ,Δ′) λ {refl → Context.Γ Γ,Δ ≡ Context.Γ Γ,Δ′ × Context.Δ Γ,Δ ≡ Context.Δ Γ,Δ′} |