diff options
author | Chloe Brown <chloe.brown.00@outlook.com> | 2021-03-20 18:36:24 +0000 |
---|---|---|
committer | Chloe Brown <chloe.brown.00@outlook.com> | 2021-03-20 18:36:24 +0000 |
commit | 4e0ceac75e6d9940f0e11f93a3815448df258c70 (patch) | |
tree | 486f5f28796ca2f4996f4caeaf63095d1b4c876c /src/Cfe/Context/Base.agda | |
parent | 16afd9dff6798509a1d654b0f06e409353e01180 (diff) |
Separate Context into a different module.
Diffstat (limited to 'src/Cfe/Context/Base.agda')
-rw-r--r-- | src/Cfe/Context/Base.agda | 123 |
1 files changed, 123 insertions, 0 deletions
diff --git a/src/Cfe/Context/Base.agda b/src/Cfe/Context/Base.agda new file mode 100644 index 0000000..dcd8056 --- /dev/null +++ b/src/Cfe/Context/Base.agda @@ -0,0 +1,123 @@ +{-# OPTIONS --without-K --safe #-} + +open import Relation.Binary using (Setoid) + +module Cfe.Context.Base + {c ℓ} (over : Setoid c ℓ) + where + +open import Cfe.Type over +open import Data.Empty +open import Data.Fin as F +open import Data.Fin.Properties hiding (≤-trans) +open import Data.Nat as ℕ hiding (_⊔_) +open import Data.Nat.Properties +open import Data.Vec +open import Level renaming (suc to lsuc) +open import Relation.Binary.PropositionalEquality +open import Relation.Nullary + +reduce≥′ : ∀ {m n} → .(m ℕ.≤ n) → (i : Fin n) → .(toℕ i ≥ m) → Fin (n ∸ m) +reduce≥′ {ℕ.zero} {n} m≤n i i≥m = i +reduce≥′ {suc m} {suc n} m≤n (suc i) i≥m = reduce≥′ (pred-mono m≤n) i (pred-mono i≥m) + +private + insert′ : ∀ {a A m n} → Vec {a} A (n ∸ m) → m ℕ.≤ n → m ≢ 0 → (i : Fin (n ∸ ℕ.pred m)) → A → Vec A (n ∸ ℕ.pred m) + insert′ {a} {A} {ℕ.zero} {n} xs m≤n m≢0 i x = ⊥-elim (m≢0 refl) + insert′ {a} {A} {suc ℕ.zero} {suc _} xs _ _ F.zero x = x ∷ xs + insert′ {a} {A} {suc ℕ.zero} {suc (suc n)} (y ∷ xs) _ _ (suc i) x = y ∷ insert′ {m = suc ℕ.zero} {suc n} xs (s≤s z≤n) (λ ()) i x + insert′ {a} {A} {suc (suc m)} {suc ℕ.zero} xs m≤n _ i x = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) m≤n) + insert′ {a} {A} {suc (suc m)} {suc (suc n)} xs m≤n _ i x = insert′ {m = suc m} xs (pred-mono m≤n) (λ ()) i x + + reduce≥′-mono : ∀ {m n} → .(m≤n : m ℕ.≤ n) → (i j : Fin n) → .(i≥m : toℕ i ≥ m) → (i≤j : i F.≤ j) → reduce≥′ m≤n i i≥m F.≤ reduce≥′ m≤n j (≤-trans i≥m i≤j) + reduce≥′-mono {ℕ.zero} {n} m≤n i j i≥m i≤j = i≤j + reduce≥′-mono {suc m} {suc n} m≤n (suc i) (suc j) i≥m i≤j = reduce≥′-mono (pred-mono m≤n) i j (pred-mono i≥m) (pred-mono i≤j) + + remove′ : ∀ {a A m} → Vec {a} A m → .(m ≢ 0) → Fin m → Vec A (ℕ.pred m) + remove′ (x ∷ xs) m≢0 F.zero = xs + remove′ (x ∷ y ∷ xs) m≢0 (suc i) = x ∷ remove′ (y ∷ xs) (λ ()) i + + rotate : ∀ {a A n} → (i j : Fin n) → .(i F.≤ j) → Vec {a} A n → Vec A n + rotate F.zero j i≤j (x ∷ xs) = insert xs j x + rotate (suc i) (suc j) i≤j (x ∷ xs) = x ∷ (rotate i j (pred-mono i≤j) xs) + +record Context n : Set (c ⊔ lsuc ℓ) where + field + m : ℕ + m≤n : m ℕ.≤ n + Γ : Vec (Type ℓ ℓ) (n ∸ m) + Δ : Vec (Type ℓ ℓ) m + +wkn₁ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → .(toℕ i ≥ Context.m Γ,Δ) → Type ℓ ℓ → Context (suc n) +wkn₁ Γ,Δ i i≥m τ = record + { m≤n = ≤-step m≤n + ; Γ = subst (Vec (Type ℓ ℓ)) (sym (+-∸-assoc 1 m≤n)) (insert Γ (F.cast (+-∸-assoc 1 m≤n) (reduce≥′ (≤-step m≤n) i i≥m)) τ) + ; Δ = Δ + } + where + open Context Γ,Δ + +wkn₂ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → toℕ i ℕ.≤ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n) +wkn₂ Γ,Δ i i<m τ = record + { m≤n = s≤s m≤n + ; Γ = Γ + ; Δ = insert Δ (fromℕ< (s≤s i<m)) τ + } + where + open Context Γ,Δ + +rotate₁ : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → toℕ i ≥ Context.m Γ,Δ → .(i F.≤ j) → Context n +rotate₁ {n} Γ,Δ i j i≥m i≤j = record + { m≤n = m≤n + ; Γ = rotate (reduce≥′ m≤n i i≥m) (reduce≥′ m≤n j (≤-trans i≥m i≤j)) (reduce≥′-mono m≤n i j i≥m i≤j) Γ + ; Δ = Δ + } + where + open Context Γ,Δ + +rotate₂ : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → (toℕ j ℕ.< Context.m Γ,Δ) → (i F.≤ j) → Context n +rotate₂ {n} Γ,Δ i j j<m i≤j = record + { m≤n = m≤n + ; Γ = Γ + ; Δ = rotate + (fromℕ< (≤-trans (s≤s i≤j) j<m)) + (fromℕ< j<m) + (begin + toℕ (fromℕ< (≤-trans (s≤s i≤j) j<m)) ≡⟨ toℕ-fromℕ< (≤-trans (s≤s i≤j) j<m) ⟩ + toℕ i ≤⟨ i≤j ⟩ + toℕ j ≡˘⟨ toℕ-fromℕ< j<m ⟩ + toℕ (fromℕ< j<m) ∎) + Δ + } + where + open Context Γ,Δ + open ≤-Reasoning + +transfer : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → (toℕ i ℕ.< Context.m Γ,Δ) → (suc (toℕ j) ≥ Context.m Γ,Δ) → Context n +transfer {n} Γ,Δ i j i<m 1+j≥m with Context.m Γ,Δ ℕ.≟ 0 +... | yes m≡0 = ⊥-elim (m<n⇒n≢0 i<m m≡0) +... | no m≢0 = record + { m≤n = pred-mono (≤-step m≤n) + ; Γ = insert′ Γ m≤n m≢0 (reduce≥′ (pred-mono (≤-step m≤n)) j (pred-mono 1+j≥m)) (lookup Δ (fromℕ< i<m)) + ; Δ = remove′ Δ m≢0 (fromℕ< i<m) + } + where + open Context Γ,Δ + +cons : ∀ {n} → Type ℓ ℓ → Context n → Context (suc n) +cons {n} τ Γ,Δ = record + { m≤n = s≤s m≤n + ; Γ = Γ + ; Δ = τ ∷ Δ + } + where + open Context Γ,Δ + +shift : ∀ {n} → Context n → Context n +shift {n} Γ,Δ = record + { m≤n = z≤n + ; Γ = subst (Vec (Type ℓ ℓ)) (trans (sym (+-∸-assoc m m≤n)) (m+n∸m≡n m n)) (Δ ++ Γ) + ; Δ = [] + } + where + open Context Γ,Δ |