diff options
author | Chloe Brown <chloe.brown.00@outlook.com> | 2021-03-05 00:00:04 +0000 |
---|---|---|
committer | Chloe Brown <chloe.brown.00@outlook.com> | 2021-03-05 00:04:46 +0000 |
commit | 5302e4a27a64cb2a97120517df4b6998da7b3168 (patch) | |
tree | ebe15b37e27e8ec7e4920200e15a40ae586bedbc /src/Cfe/Language/Construct/Concatenate.agda | |
parent | ff3600687249a19ae63353f7791b137094f5a5a1 (diff) |
Complete proofs up to Proposition 3.2 (excluding unrolling)
Diffstat (limited to 'src/Cfe/Language/Construct/Concatenate.agda')
-rw-r--r-- | src/Cfe/Language/Construct/Concatenate.agda | 130 |
1 files changed, 109 insertions, 21 deletions
diff --git a/src/Cfe/Language/Construct/Concatenate.agda b/src/Cfe/Language/Construct/Concatenate.agda index 29e635d..62acf8f 100644 --- a/src/Cfe/Language/Construct/Concatenate.agda +++ b/src/Cfe/Language/Construct/Concatenate.agda @@ -1,40 +1,128 @@ {-# OPTIONS --without-K --safe #-} open import Relation.Binary -import Cfe.Language module Cfe.Language.Construct.Concatenate - {c ℓ a aℓ b bℓ} (over : Setoid c ℓ) - (A : Cfe.Language.Language over a aℓ) - (B : Cfe.Language.Language over b bℓ) + {c ℓ} (over : Setoid c ℓ) where +open import Algebra +open import Cfe.Language over as 𝕃 open import Data.Empty open import Data.List -open import Data.List.Relation.Binary.Equality.Setoid over +open import Data.List.Properties open import Data.Product as Product open import Function open import Level -open import Cfe.Language over +open import Relation.Binary.PropositionalEquality as ≡ +import Relation.Binary.Indexed.Heterogeneous as I -open Setoid over renaming (Carrier to C) +open Setoid over using () renaming (Carrier to C) -infix 4 _≈ᶜ_ -infix 4 _∙_ +module _ + {a aℓ b bℓ} + (A : Language a aℓ) + (B : Language b bℓ) + where + + infix 4 _≈ᶜ_ + infix 4 _∙_ + + Concat : List C → Set (c ⊔ a ⊔ b) + Concat l = ∃[ l₁ ] l₁ ∈ A × ∃[ l₂ ] l₂ ∈ B × l₁ ++ l₂ ≡ l -Concat : List C → Set (c ⊔ ℓ ⊔ a ⊔ b) -Concat l = ∃[ l₁ ] l₁ ∈ A × ∃[ l₂ ] l₂ ∈ B × l₁ ++ l₂ ≋ l + _≈ᶜ_ : {l₁ l₂ : List C} → REL (Concat l₁) (Concat l₂) (aℓ ⊔ bℓ) + (_ , l₁∈A , _ , l₂∈B , _) ≈ᶜ (_ , l₁′∈A , _ , l₂′∈B , _) = (≈ᴸ A l₁∈A l₁′∈A) × (≈ᴸ B l₂∈B l₂′∈B) -_≈ᶜ_ : {l₁ l₂ : List C} → REL (Concat l₁) (Concat l₂) (aℓ ⊔ bℓ) -(_ , l₁∈A , _ , l₂∈B , _) ≈ᶜ (_ , l₁′∈A , _ , l₂′∈B , _) = (≈ᴸ A l₁∈A l₁′∈A) × (≈ᴸ B l₂∈B l₂′∈B) + _∙_ : Language (c ⊔ a ⊔ b) (aℓ ⊔ bℓ) + _∙_ = record + { Carrier = Concat + ; _≈_ = _≈ᶜ_ + ; isEquivalence = record + { refl = ≈ᴸ-refl A , ≈ᴸ-refl B + ; sym = Product.map (≈ᴸ-sym A) (≈ᴸ-sym B) + ; trans = Product.zip (≈ᴸ-trans A) (≈ᴸ-trans B) + } + } -_∙_ : Language (c ⊔ ℓ ⊔ a ⊔ b) (aℓ ⊔ bℓ) -_∙_ = record - { Carrier = Concat - ; _≈_ = _≈ᶜ_ - ; isEquivalence = record - { refl = ≈ᴸ-refl A , ≈ᴸ-refl B - ; sym = Product.map (≈ᴸ-sym A) (≈ᴸ-sym B) - ; trans = Product.zip (≈ᴸ-trans A) (≈ᴸ-trans B) +isMonoid : ∀ {a aℓ} → IsMonoid 𝕃._≈_ _∙_ (𝕃.Lift (ℓ ⊔ a) aℓ {ε}) +isMonoid {a} = record + { isSemigroup = record + { isMagma = record + { isEquivalence = ≈-isEquivalence + ; ∙-cong = λ X≈Y U≈V → record + { f = λ { (l₁ , l₁∈X , l₂ , l₂∈U , l₁++l₂≡l) → l₁ , _≈_.f X≈Y l₁∈X , l₂ , _≈_.f U≈V l₂∈U , l₁++l₂≡l} + ; f⁻¹ = λ { (l₁ , l₁∈Y , l₂ , l₂∈V , l₁++l₂≡l) → l₁ , _≈_.f⁻¹ X≈Y l₁∈Y , l₂ , _≈_.f⁻¹ U≈V l₂∈V , l₁++l₂≡l} + ; cong₁ = λ { (x , y) → _≈_.cong₁ X≈Y x , _≈_.cong₁ U≈V y} + ; cong₂ = λ { (x , y) → _≈_.cong₂ X≈Y x , _≈_.cong₂ U≈V y} + } + } + ; assoc = λ X Y Z → record + { f = λ {l} → (λ { (l₁ , (l₁′ , l₁′∈X , l₂′ , l₂′∈Y , l₁′++l₂′≡l₁) , l₂ , l₂∈Z , l₁++l₂≡l) → + l₁′ , l₁′∈X , l₂′ ++ l₂ , (l₂′ , l₂′∈Y , l₂ , l₂∈Z , refl) , (begin + l₁′ ++ l₂′ ++ l₂ ≡˘⟨ ++-assoc l₁′ l₂′ l₂ ⟩ + (l₁′ ++ l₂′) ++ l₂ ≡⟨ cong (_++ l₂) l₁′++l₂′≡l₁ ⟩ + l₁ ++ l₂ ≡⟨ l₁++l₂≡l ⟩ + l ∎)}) + ; f⁻¹ = λ {l} → λ { (l₁ , l₁∈X , l₂ , (l₁′ , l₁′∈Y , l₂′ , l₂′∈Z , l₁′++l₂′≡l₂), l₁++l₂≡l) → + l₁ ++ l₁′ , ( l₁ , l₁∈X , l₁′ , l₁′∈Y , refl) , l₂′ , l₂′∈Z , (begin + (l₁ ++ l₁′) ++ l₂′ ≡⟨ ++-assoc l₁ l₁′ l₂′ ⟩ + l₁ ++ (l₁′ ++ l₂′) ≡⟨ cong (l₁ ++_) l₁′++l₂′≡l₂ ⟩ + l₁ ++ l₂ ≡⟨ l₁++l₂≡l ⟩ + l ∎)} + ; cong₁ = Product.assocʳ + ; cong₂ = Product.assocˡ + } } + ; identity = (λ A → record + { f = idˡ {a} A + ; f⁻¹ = λ {l} l∈A → [] , lift refl , l , l∈A , refl + ; cong₁ = λ {l₁} {l₂} {l₁∈A} {l₂∈A} → idˡ-cong {a} A {l₁} {l₂} {l₁∈A} {l₂∈A} + ; cong₂ = λ l₁≈l₂ → lift _ , l₁≈l₂ + }) , (λ A → record + { f = idʳ {a} A + ; f⁻¹ = λ {l} l∈A → l , l∈A , [] , lift refl , ++-identityʳ l + ; cong₁ = λ {l₁} {l₂} {l₁∈A} {l₂∈A} → idʳ-cong {a} A {l₁} {l₂} {l₁∈A} {l₂∈A} + ; cong₂ = λ l₁≈l₂ → l₁≈l₂ , lift _ + }) + } + where + open ≡.≡-Reasoning + + idˡ : ∀ {a aℓ} → + (A : Language (c ⊔ ℓ ⊔ a) aℓ) → + ∀ {l} → + l ∈ ((𝕃.Lift (ℓ ⊔ a) aℓ {ε}) ∙ A) → + l ∈ A + idˡ _ ([] , _ , l , l∈A , refl) = l∈A + + idˡ-cong : ∀ {a aℓ} → + (A : Language (c ⊔ ℓ ⊔ a) aℓ) → + ∀ {l₁ l₂ l₁∈A l₂∈A} → + ≈ᴸ ((𝕃.Lift (ℓ ⊔ a) aℓ {ε}) ∙ A) {l₁} {l₂} l₁∈A l₂∈A → + ≈ᴸ A (idˡ {a} A l₁∈A) (idˡ {a} A l₂∈A) + idˡ-cong _ {l₁∈A = [] , _ , l₁ , l₁∈A , refl} {[] , _ , l₂ , l₂∈A , refl} (_ , l₁≈l₂) = l₁≈l₂ + + idʳ : ∀ {a aℓ} → + (A : Language (c ⊔ ℓ ⊔ a) aℓ) → + ∀ {l} → + l ∈ (A ∙ (𝕃.Lift (ℓ ⊔ a) aℓ {ε})) → + l ∈ A + idʳ A (l , l∈A , [] , _ , refl) = ∈-cong A (sym (++-identityʳ l)) l∈A + + idʳ-cong : ∀ {a aℓ} → + (A : Language (c ⊔ ℓ ⊔ a) aℓ) → + ∀ {l₁ l₂ l₁∈A l₂∈A} → + ≈ᴸ (A ∙ (𝕃.Lift (ℓ ⊔ a) aℓ {ε})) {l₁} {l₂} l₁∈A l₂∈A → + ≈ᴸ A (idʳ {a} A l₁∈A) (idʳ {a} A l₂∈A) + idʳ-cong A {l₁∈A = l₁ , l₁∈A , [] , _ , refl} {l₂ , l₂∈A , [] , _ , refl} (l₁≈l₂ , _) = + ≈ᴸ-cong A (sym (++-identityʳ l₁)) (sym (++-identityʳ l₂)) l₁∈A l₂∈A l₁≈l₂ + +∙-monotone : ∀ {a aℓ b bℓ} → _∙_ Preserves₂ _≤_ {a} {aℓ} ⟶ _≤_ {b} {bℓ} ⟶ _≤_ +∙-monotone X≤Y U≤V = record + { f = λ {(_ , l₁∈X , _ , l₂∈U , l₁++l₂≡l) → -, X≤Y.f l₁∈X , -, U≤V.f l₂∈U , l₁++l₂≡l} + ; cong = Product.map X≤Y.cong U≤V.cong } + where + module X≤Y = _≤_ X≤Y + module U≤V = _≤_ U≤V |