diff options
author | Chloe Brown <chloe.brown.00@outlook.com> | 2021-02-18 19:04:09 +0000 |
---|---|---|
committer | Chloe Brown <chloe.brown.00@outlook.com> | 2021-02-18 19:04:09 +0000 |
commit | ff3600687249a19ae63353f7791b137094f5a5a1 (patch) | |
tree | 62a17b3da8e9f909a0c7f0babe5fd590109f6d64 /src/Cfe/Language/Construct/Concatenate.agda | |
parent | 01ec93c5a03f6c4c660aa593b4c00afccc48907a (diff) |
Another redefinition of Language.
Diffstat (limited to 'src/Cfe/Language/Construct/Concatenate.agda')
-rw-r--r-- | src/Cfe/Language/Construct/Concatenate.agda | 51 |
1 files changed, 16 insertions, 35 deletions
diff --git a/src/Cfe/Language/Construct/Concatenate.agda b/src/Cfe/Language/Construct/Concatenate.agda index b75f822..29e635d 100644 --- a/src/Cfe/Language/Construct/Concatenate.agda +++ b/src/Cfe/Language/Construct/Concatenate.agda @@ -4,56 +4,37 @@ open import Relation.Binary import Cfe.Language module Cfe.Language.Construct.Concatenate - {c ℓ a aℓ b bℓ} (setoid : Setoid c ℓ) - (A : Cfe.Language.Language setoid a aℓ) - (B : Cfe.Language.Language setoid b bℓ) + {c ℓ a aℓ b bℓ} (over : Setoid c ℓ) + (A : Cfe.Language.Language over a aℓ) + (B : Cfe.Language.Language over b bℓ) where open import Data.Empty open import Data.List -open import Data.List.Relation.Binary.Equality.Setoid setoid +open import Data.List.Relation.Binary.Equality.Setoid over open import Data.Product as Product open import Function open import Level -open import Cfe.Language setoid -open Language +open import Cfe.Language over -open Setoid setoid renaming (Carrier to C) +open Setoid over renaming (Carrier to C) infix 4 _≈ᶜ_ infix 4 _∙_ Concat : List C → Set (c ⊔ ℓ ⊔ a ⊔ b) -Concat l = ∃[ l₁ ](l₁ ∈ A × ∃[ l₂ ](l₂ ∈ B × (l₁ ++ l₂ ≋ l))) +Concat l = ∃[ l₁ ] l₁ ∈ A × ∃[ l₂ ] l₂ ∈ B × l₁ ++ l₂ ≋ l -_≈ᶜ_ : {l : List C} → Rel (Concat l) (c ⊔ ℓ ⊔ aℓ ⊔ bℓ) -(l₁ , l₁∈A , l₂ , l₂∈B , l₁++l₂) ≈ᶜ (l₁′ , l₁′∈A , l₂′ , l₂′∈B , l₁′++l₂′) = - ∃[ l₁≋l₁′ ](_≈ᴸ_ A (⤖ A l₁≋l₁′ l₁∈A) l₁′∈A) - × ∃[ l₂≋l₂′ ](_≈ᴸ_ B (⤖ B l₂≋l₂′ l₂∈B) l₂′∈B) +_≈ᶜ_ : {l₁ l₂ : List C} → REL (Concat l₁) (Concat l₂) (aℓ ⊔ bℓ) +(_ , l₁∈A , _ , l₂∈B , _) ≈ᶜ (_ , l₁′∈A , _ , l₂′∈B , _) = (≈ᴸ A l₁∈A l₁′∈A) × (≈ᴸ B l₂∈B l₂′∈B) -⤖ᶜ : {l₁ l₂ : List C} → l₁ ≋ l₂ → Concat l₁ → Concat l₂ -⤖ᶜ l₁≋l₂ = map₂ (map₂ (map₂ (map₂ (flip ≋-trans l₁≋l₂)))) - -_∙_ : Language (c ⊔ ℓ ⊔ a ⊔ b) (c ⊔ ℓ ⊔ aℓ ⊔ bℓ) +_∙_ : Language (c ⊔ ℓ ⊔ a ⊔ b) (aℓ ⊔ bℓ) _∙_ = record - { 𝕃 = Concat - ; _≈ᴸ_ = _≈ᶜ_ - ; ⤖ = ⤖ᶜ - ; isLanguage = record - { ≈ᴸ-isEquivalence = record - { refl = (≋-refl , ⤖-refl A) , (≋-refl , ⤖-refl B) - ; sym = Product.map (Product.map ≋-sym (⤖-sym A)) - (Product.map ≋-sym (⤖-sym B)) - ; trans = Product.zip (Product.zip ≋-trans (⤖-trans A)) - (Product.zip ≋-trans (⤖-trans B)) - } - ; ⤖-cong = id - ; ⤖-bijective = λ {_} {_} {l₁≋l₂} → id , λ l₂∈𝕃 → - ⤖ᶜ (≋-sym l₁≋l₂) l₂∈𝕃 , (≋-refl , ⤖-refl A) , (≋-refl , ⤖-refl B) - ; ⤖-refl = (≋-refl , ⤖-refl A) , (≋-refl , ⤖-refl B) - ; ⤖-sym = Product.map (Product.map ≋-sym (⤖-sym A)) - (Product.map ≋-sym (⤖-sym B)) - ; ⤖-trans = Product.zip (Product.zip ≋-trans (⤖-trans A)) - (Product.zip ≋-trans (⤖-trans B)) + { Carrier = Concat + ; _≈_ = _≈ᶜ_ + ; isEquivalence = record + { refl = ≈ᴸ-refl A , ≈ᴸ-refl B + ; sym = Product.map (≈ᴸ-sym A) (≈ᴸ-sym B) + ; trans = Product.zip (≈ᴸ-trans A) (≈ᴸ-trans B) } } |