diff options
author | Chloe Brown <chloe.brown.00@outlook.com> | 2021-03-05 00:00:04 +0000 |
---|---|---|
committer | Chloe Brown <chloe.brown.00@outlook.com> | 2021-03-05 00:04:46 +0000 |
commit | 5302e4a27a64cb2a97120517df4b6998da7b3168 (patch) | |
tree | ebe15b37e27e8ec7e4920200e15a40ae586bedbc /src/Relation/Binary/Construct | |
parent | ff3600687249a19ae63353f7791b137094f5a5a1 (diff) |
Complete proofs up to Proposition 3.2 (excluding unrolling)
Diffstat (limited to 'src/Relation/Binary/Construct')
-rw-r--r-- | src/Relation/Binary/Construct/InducedPoset.agda | 70 |
1 files changed, 0 insertions, 70 deletions
diff --git a/src/Relation/Binary/Construct/InducedPoset.agda b/src/Relation/Binary/Construct/InducedPoset.agda deleted file mode 100644 index 30363e6..0000000 --- a/src/Relation/Binary/Construct/InducedPoset.agda +++ /dev/null @@ -1,70 +0,0 @@ -{-# OPTIONS --without-K --safe #-} - -open import Relation.Binary - -module Relation.Binary.Construct.InducedPoset - {a ℓ} {A : Set a} - (_≤_ : Rel A ℓ) - where - -open import Algebra -open import Data.Product -open import Function -open import Level - -_≈_ : Rel A ℓ -_≈_ = _≤_ -×- flip _≤_ - -AntiCongruent₁ : Op₁ A → Set (a ⊔ ℓ) -AntiCongruent₁ f = f Preserves _≤_ ⟶ flip _≤_ - -AntiCongruent₂ : Op₂ A → Set (a ⊔ ℓ) -AntiCongruent₂ ∙ = ∙ Preserves₂ _≤_ ⟶ _≤_ ⟶ flip _≤_ - -LeftAntiCongruent : Op₂ A → Set (a ⊔ ℓ) -LeftAntiCongruent _∙_ = ∀ {x} → (x ∙_) Preserves _≤_ ⟶ flip _≤_ - -RightAntiCongruent : Op₂ A → Set (a ⊔ ℓ) -RightAntiCongruent _∙_ = ∀ {x} → (_∙ x) Preserves _≤_ ⟶ flip _≤_ - -InducedPoset : Reflexive _≤_ → Transitive _≤_ → Poset a ℓ ℓ -InducedPoset ≤-refl ≤-trans = record - { _≈_ = _≈_ - ; _≤_ = _≤_ - ; isPartialOrder = record - { isPreorder = record - { isEquivalence = record - { refl = ≤-refl , ≤-refl - ; sym = swap - ; trans = zip ≤-trans (flip ≤-trans) - } - ; reflexive = proj₁ - ; trans = ≤-trans - } - ; antisym = _,_ - } - } - -≤-cong→≈-cong : {f : Op₁ A} → Congruent₁ _≤_ f → Congruent₁ _≈_ f -≤-cong→≈-cong ≤-cong = map ≤-cong ≤-cong - -≤-anticong→≈-cong : {f : Op₁ A} → AntiCongruent₁ f → Congruent₁ _≈_ f -≤-anticong→≈-cong ≤-anticong = swap ∘ map ≤-anticong ≤-anticong - -≤-cong₂→≈-cong₂ : {∙ : Op₂ A} → Congruent₂ _≤_ ∙ → Congruent₂ _≈_ ∙ -≤-cong₂→≈-cong₂ ≤-cong₂ = zip ≤-cong₂ ≤-cong₂ - -≤-anticong₂→≈-cong₂ : {∙ : Op₂ A} → AntiCongruent₂ ∙ → Congruent₂ _≈_ ∙ -≤-anticong₂→≈-cong₂ ≤-anticong₂ = swap ∘₂ zip ≤-anticong₂ ≤-anticong₂ - -≤-congₗ→≈-congₗ : {∙ : Op₂ A} → LeftCongruent _≤_ ∙ → LeftCongruent _≈_ ∙ -≤-congₗ→≈-congₗ ≤-congₗ = map ≤-congₗ ≤-congₗ - -≤-anticongₗ→≈-congₗ : {∙ : Op₂ A} → LeftAntiCongruent ∙ → LeftCongruent _≈_ ∙ -≤-anticongₗ→≈-congₗ ≤-anticongₗ = swap ∘ map ≤-anticongₗ ≤-anticongₗ - -≤-congᵣ→≈-congᵣ : {∙ : Op₂ A} → RightCongruent _≤_ ∙ → RightCongruent _≈_ ∙ -≤-congᵣ→≈-congᵣ ≤-congᵣ = map ≤-congᵣ ≤-congᵣ - -≤-anticongᵣ→≈-congᵣ : {∙ : Op₂ A} → RightAntiCongruent ∙ → RightCongruent _≈_ ∙ -≤-anticongᵣ→≈-congᵣ ≤-anticongᵣ = swap ∘ map ≤-anticongᵣ ≤-anticongᵣ |