summaryrefslogtreecommitdiff
path: root/src/Cfe/Context/Base.agda
diff options
context:
space:
mode:
Diffstat (limited to 'src/Cfe/Context/Base.agda')
-rw-r--r--src/Cfe/Context/Base.agda123
1 files changed, 123 insertions, 0 deletions
diff --git a/src/Cfe/Context/Base.agda b/src/Cfe/Context/Base.agda
new file mode 100644
index 0000000..dcd8056
--- /dev/null
+++ b/src/Cfe/Context/Base.agda
@@ -0,0 +1,123 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Relation.Binary using (Setoid)
+
+module Cfe.Context.Base
+ {c ℓ} (over : Setoid c ℓ)
+ where
+
+open import Cfe.Type over
+open import Data.Empty
+open import Data.Fin as F
+open import Data.Fin.Properties hiding (≤-trans)
+open import Data.Nat as ℕ hiding (_⊔_)
+open import Data.Nat.Properties
+open import Data.Vec
+open import Level renaming (suc to lsuc)
+open import Relation.Binary.PropositionalEquality
+open import Relation.Nullary
+
+reduce≥′ : ∀ {m n} → .(m ℕ.≤ n) → (i : Fin n) → .(toℕ i ≥ m) → Fin (n ∸ m)
+reduce≥′ {ℕ.zero} {n} m≤n i i≥m = i
+reduce≥′ {suc m} {suc n} m≤n (suc i) i≥m = reduce≥′ (pred-mono m≤n) i (pred-mono i≥m)
+
+private
+ insert′ : ∀ {a A m n} → Vec {a} A (n ∸ m) → m ℕ.≤ n → m ≢ 0 → (i : Fin (n ∸ ℕ.pred m)) → A → Vec A (n ∸ ℕ.pred m)
+ insert′ {a} {A} {ℕ.zero} {n} xs m≤n m≢0 i x = ⊥-elim (m≢0 refl)
+ insert′ {a} {A} {suc ℕ.zero} {suc _} xs _ _ F.zero x = x ∷ xs
+ insert′ {a} {A} {suc ℕ.zero} {suc (suc n)} (y ∷ xs) _ _ (suc i) x = y ∷ insert′ {m = suc ℕ.zero} {suc n} xs (s≤s z≤n) (λ ()) i x
+ insert′ {a} {A} {suc (suc m)} {suc ℕ.zero} xs m≤n _ i x = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) m≤n)
+ insert′ {a} {A} {suc (suc m)} {suc (suc n)} xs m≤n _ i x = insert′ {m = suc m} xs (pred-mono m≤n) (λ ()) i x
+
+ reduce≥′-mono : ∀ {m n} → .(m≤n : m ℕ.≤ n) → (i j : Fin n) → .(i≥m : toℕ i ≥ m) → (i≤j : i F.≤ j) → reduce≥′ m≤n i i≥m F.≤ reduce≥′ m≤n j (≤-trans i≥m i≤j)
+ reduce≥′-mono {ℕ.zero} {n} m≤n i j i≥m i≤j = i≤j
+ reduce≥′-mono {suc m} {suc n} m≤n (suc i) (suc j) i≥m i≤j = reduce≥′-mono (pred-mono m≤n) i j (pred-mono i≥m) (pred-mono i≤j)
+
+ remove′ : ∀ {a A m} → Vec {a} A m → .(m ≢ 0) → Fin m → Vec A (ℕ.pred m)
+ remove′ (x ∷ xs) m≢0 F.zero = xs
+ remove′ (x ∷ y ∷ xs) m≢0 (suc i) = x ∷ remove′ (y ∷ xs) (λ ()) i
+
+ rotate : ∀ {a A n} → (i j : Fin n) → .(i F.≤ j) → Vec {a} A n → Vec A n
+ rotate F.zero j i≤j (x ∷ xs) = insert xs j x
+ rotate (suc i) (suc j) i≤j (x ∷ xs) = x ∷ (rotate i j (pred-mono i≤j) xs)
+
+record Context n : Set (c ⊔ lsuc ℓ) where
+ field
+ m : ℕ
+ m≤n : m ℕ.≤ n
+ Γ : Vec (Type ℓ ℓ) (n ∸ m)
+ Δ : Vec (Type ℓ ℓ) m
+
+wkn₁ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → .(toℕ i ≥ Context.m Γ,Δ) → Type ℓ ℓ → Context (suc n)
+wkn₁ Γ,Δ i i≥m τ = record
+ { m≤n = ≤-step m≤n
+ ; Γ = subst (Vec (Type ℓ ℓ)) (sym (+-∸-assoc 1 m≤n)) (insert Γ (F.cast (+-∸-assoc 1 m≤n) (reduce≥′ (≤-step m≤n) i i≥m)) τ)
+ ; Δ = Δ
+ }
+ where
+ open Context Γ,Δ
+
+wkn₂ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → toℕ i ℕ.≤ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n)
+wkn₂ Γ,Δ i i<m τ = record
+ { m≤n = s≤s m≤n
+ ; Γ = Γ
+ ; Δ = insert Δ (fromℕ< (s≤s i<m)) τ
+ }
+ where
+ open Context Γ,Δ
+
+rotate₁ : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → toℕ i ≥ Context.m Γ,Δ → .(i F.≤ j) → Context n
+rotate₁ {n} Γ,Δ i j i≥m i≤j = record
+ { m≤n = m≤n
+ ; Γ = rotate (reduce≥′ m≤n i i≥m) (reduce≥′ m≤n j (≤-trans i≥m i≤j)) (reduce≥′-mono m≤n i j i≥m i≤j) Γ
+ ; Δ = Δ
+ }
+ where
+ open Context Γ,Δ
+
+rotate₂ : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → (toℕ j ℕ.< Context.m Γ,Δ) → (i F.≤ j) → Context n
+rotate₂ {n} Γ,Δ i j j<m i≤j = record
+ { m≤n = m≤n
+ ; Γ = Γ
+ ; Δ = rotate
+ (fromℕ< (≤-trans (s≤s i≤j) j<m))
+ (fromℕ< j<m)
+ (begin
+ toℕ (fromℕ< (≤-trans (s≤s i≤j) j<m)) ≡⟨ toℕ-fromℕ< (≤-trans (s≤s i≤j) j<m) ⟩
+ toℕ i ≤⟨ i≤j ⟩
+ toℕ j ≡˘⟨ toℕ-fromℕ< j<m ⟩
+ toℕ (fromℕ< j<m) ∎)
+ Δ
+ }
+ where
+ open Context Γ,Δ
+ open ≤-Reasoning
+
+transfer : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → (toℕ i ℕ.< Context.m Γ,Δ) → (suc (toℕ j) ≥ Context.m Γ,Δ) → Context n
+transfer {n} Γ,Δ i j i<m 1+j≥m with Context.m Γ,Δ ℕ.≟ 0
+... | yes m≡0 = ⊥-elim (m<n⇒n≢0 i<m m≡0)
+... | no m≢0 = record
+ { m≤n = pred-mono (≤-step m≤n)
+ ; Γ = insert′ Γ m≤n m≢0 (reduce≥′ (pred-mono (≤-step m≤n)) j (pred-mono 1+j≥m)) (lookup Δ (fromℕ< i<m))
+ ; Δ = remove′ Δ m≢0 (fromℕ< i<m)
+ }
+ where
+ open Context Γ,Δ
+
+cons : ∀ {n} → Type ℓ ℓ → Context n → Context (suc n)
+cons {n} τ Γ,Δ = record
+ { m≤n = s≤s m≤n
+ ; Γ = Γ
+ ; Δ = τ ∷ Δ
+ }
+ where
+ open Context Γ,Δ
+
+shift : ∀ {n} → Context n → Context n
+shift {n} Γ,Δ = record
+ { m≤n = z≤n
+ ; Γ = subst (Vec (Type ℓ ℓ)) (trans (sym (+-∸-assoc m m≤n)) (m+n∸m≡n m n)) (Δ ++ Γ)
+ ; Δ = []
+ }
+ where
+ open Context Γ,Δ