diff options
Diffstat (limited to 'src/Cfe/Judgement/Base.agda')
-rw-r--r-- | src/Cfe/Judgement/Base.agda | 82 |
1 files changed, 72 insertions, 10 deletions
diff --git a/src/Cfe/Judgement/Base.agda b/src/Cfe/Judgement/Base.agda index 0db2d8f..8b3bf55 100644 --- a/src/Cfe/Judgement/Base.agda +++ b/src/Cfe/Judgement/Base.agda @@ -6,21 +6,83 @@ module Cfe.Judgement.Base {c ℓ} (over : Setoid c ℓ) where -open import Cfe.Expression over +open import Cfe.Expression over as E open import Cfe.Type over renaming (_∙_ to _∙ₜ_; _∨_ to _∨ₜ_) open import Cfe.Type.Construct.Lift over -open import Data.Fin +open import Data.Fin as F open import Data.Nat as ℕ hiding (_⊔_) open import Data.Vec hiding (_⊛_) open import Level hiding (Lift) renaming (suc to lsuc) +open import Relation.Binary.PropositionalEquality infix 2 _,_⊢_∶_ +infix 4 _≅_ -data _,_⊢_∶_ {m} {n} : Vec (Type ℓ ℓ) m → Vec (Type ℓ ℓ) n → Expression (n ℕ.+ m) → Type ℓ ℓ → Set (c ⊔ lsuc ℓ) where - Eps : ∀ {Γ Δ} → Γ , Δ ⊢ ε ∶ Lift ℓ ℓ τε - Char : ∀ {Γ Δ} c → Γ , Δ ⊢ Char c ∶ Lift ℓ ℓ τ[ c ] - Bot : ∀ {Γ Δ} → Γ , Δ ⊢ ⊥ ∶ Lift ℓ ℓ τ⊥ - Var : ∀ {Γ Δ i} i≥n → Γ , Δ ⊢ Var i ∶ lookup Γ (reduce≥ i i≥n) - Fix : ∀ {Γ Δ e τ} → Γ , τ ∷ Δ ⊢ e ∶ τ → Γ , Δ ⊢ μ e ∶ τ - Cat : ∀ {Γ Δ e e′ τ τ′} → Γ , Δ ⊢ e ∶ τ → Δ ++ Γ , [] ⊢ e′ ∶ τ′ → τ ⊛ τ′ → Γ , Δ ⊢ e ∙ e′ ∶ τ ∙ₜ τ′ - Vee : ∀ {Γ Δ e e′ τ τ′} → Γ , Δ ⊢ e ∶ τ → Γ , Δ ⊢ e′ ∶ τ′ → τ # τ′ → Γ , Δ ⊢ e ∨ e′ ∶ τ ∨ₜ τ′ +data _,_⊢_∶_ : {m : ℕ} → {n : ℕ} → Vec (Type ℓ ℓ) m → Vec (Type ℓ ℓ) n → Expression (n ℕ.+ m) → Type ℓ ℓ → Set (c ⊔ lsuc ℓ) where + Eps : ∀ {m n} {Γ : Vec _ m} {Δ : Vec _ n} → Γ , Δ ⊢ ε ∶ Lift ℓ ℓ τε + Char : ∀ {m n} {Γ : Vec _ m} {Δ : Vec _ n} c → Γ , Δ ⊢ Char c ∶ Lift ℓ ℓ τ[ c ] + Bot : ∀ {m n} {Γ : Vec _ m} {Δ : Vec _ n} → Γ , Δ ⊢ ⊥ ∶ Lift ℓ ℓ τ⊥ + Var : ∀ {m n : ℕ} {Γ : Vec _ m} {Δ : Vec _ n} {i : Fin (n ℕ.+ m)} (i≥n : toℕ i ≥ n) → Γ , Δ ⊢ Var i ∶ lookup Γ (reduce≥ i i≥n) + Fix : ∀ {m n} {Γ : Vec _ m} {Δ : Vec _ n} {e τ} → Γ , τ ∷ Δ ⊢ e ∶ τ → Γ , Δ ⊢ μ e ∶ τ + Cat : ∀ {m n} {Γ : Vec _ m} {Δ : Vec _ n} {e₁ e₂ τ₁ τ₂} → Γ , Δ ⊢ e₁ ∶ τ₁ → Δ ++ Γ , [] ⊢ e₂ ∶ τ₂ → (τ₁⊛τ₂ : τ₁ ⊛ τ₂) → Γ , Δ ⊢ e₁ ∙ e₂ ∶ τ₁ ∙ₜ τ₂ + Vee : ∀ {m n} {Γ : Vec _ m} {Δ : Vec _ n} {e₁ e₂ τ₁ τ₂} → Γ , Δ ⊢ e₁ ∶ τ₁ → Γ , Δ ⊢ e₂ ∶ τ₂ → (τ₁#τ₂ : τ₁ # τ₂) → Γ , Δ ⊢ e₁ ∨ e₂ ∶ τ₁ ∨ₜ τ₂ + +vcast : ∀ {a A m n} → .(m ≡ n) → Vec {a} A m → Vec A n +vcast {n = suc n} eq (x ∷ xs) = x ∷ vcast (suc-injective eq) xs + where + open import Data.Nat.Properties using (suc-injective) +vcast {n = ℕ.zero} eq [] = [] + +data _≅_ {a A} : {m n : ℕ} → Vec {a} A m → Vec A n → Set a where + []≅[] : [] ≅ [] + _∷_ : ∀ {m n x y} {xs : Vec _ m} {ys : Vec _ n} → (x≡y : x ≡ y) → xs ≅ ys → x ∷ xs ≅ y ∷ ys + +≅-refl : ∀ {a A m} {xs : Vec {a} A m} → xs ≅ xs +≅-refl {xs = []} = []≅[] +≅-refl {xs = x ∷ xs} = refl ∷ ≅-refl + +≅-reflexive : ∀ {a A m} {xs : Vec {a} A m} {ys} → xs ≡ ys → xs ≅ ys +≅-reflexive refl = ≅-refl + +≅-length : ∀ {a A m n} {xs : Vec {a} A m} {ys : Vec _ n} → xs ≅ ys → m ≡ n +≅-length []≅[] = refl +≅-length (_ ∷ xs≅ys) = cong suc (≅-length xs≅ys) + +≅⇒≡ : ∀ {a A m n} {xs : Vec {a} A m} {ys : Vec _ n} → (xs≅ys : xs ≅ ys) → vcast (≅-length xs≅ys) xs ≡ ys +≅⇒≡ []≅[] = refl +≅⇒≡ (x≡y ∷ xs≅ys) = cong₂ _∷_ x≡y (≅⇒≡ xs≅ys) + +++ˡ : ∀ {a A m n k} {xs : Vec {a} A m} {ys : Vec _ n} (zs : Vec _ k) → xs ≅ ys → zs ++ xs ≅ zs ++ ys +++ˡ [] xs≅ys = xs≅ys +++ˡ (z ∷ zs) xs≅ys = refl ∷ ++ˡ zs xs≅ys + +cast₁ : ∀ {m₁ m₂ n} {Γ₁ : Vec _ m₁} {Γ₂ : Vec _ m₂} {Δ : Vec _ n} {e τ} → (eq : Γ₁ ≅ Γ₂) → Γ₁ , Δ ⊢ e ∶ τ → Γ₂ , Δ ⊢ E.cast (cong (n ℕ.+_) (≅-length eq)) e ∶ τ +cast₁ eq Eps = Eps +cast₁ eq (Char c) = Char c +cast₁ eq Bot = Bot +cast₁ {n = n} {Γ₁} {Δ = Δ} eq (Var {i = i} i≥n) = + subst₂ (_, Δ ⊢ E.cast (cong (n ℕ.+_) (≅-length eq)) (Var i) ∶_) + (≅⇒≡ eq) + (eq′ Γ₁ i≥n (≅-length eq)) + (Var (ge (≅-length eq) i≥n)) + where + open import Data.Empty using (⊥-elim) + open import Data.Fin.Properties using (toℕ<n; toℕ-cast; toℕ-injective) + open import Data.Nat.Properties using (<⇒≱; +-identityʳ; module ≤-Reasoning) + + ge : ∀ {m₁ m₂ n i} → .(eq : m₁ ≡ m₂) → toℕ {n ℕ.+ m₁} i ≥ n → toℕ (F.cast (cong (n ℕ.+_) eq) i) ≥ n + ge {n = ℕ.zero} {i} _ _ = z≤n + ge {n = suc n} {suc i} eq (s≤s i≥n) = s≤s (ge eq i≥n) + + eq′ : ∀ {a A m₁ m₂ n i} Γ i≥n → (eq : m₁ ≡ m₂) → lookup {a} {A} {m₂} (vcast eq Γ) (reduce≥ {n} (F.cast (cong (n ℕ.+_) eq) i) (ge eq i≥n)) ≡ lookup Γ (reduce≥ i i≥n) + eq′ {m₁ = ℕ.zero} {ℕ.zero} {n} {i} Γ i≥n _ = ⊥-elim (<⇒≱ (begin-strict + toℕ i <⟨ toℕ<n i ⟩ + n ℕ.+ 0 ≡⟨ +-identityʳ n ⟩ + n ∎) i≥n) + where + open ≤-Reasoning + eq′ {m₁ = suc m₁} {suc m₁} {ℕ.zero} {i} Γ i≥n refl = cong₂ lookup {vcast refl Γ} (≅⇒≡ ≅-refl) (toℕ-injective (toℕ-cast refl i)) + eq′ {m₁ = suc m₁} {suc m₂} {suc n} {suc i} Γ (s≤s i≥n) eq = eq′ Γ i≥n eq +cast₁ eq (Fix Γ₁,τ∷Δ⊢e∶τ) = Fix (cast₁ eq Γ₁,τ∷Δ⊢e∶τ) +cast₁ {Δ = Δ} eq (Cat Γ₁,Δ⊢e₁∶τ₁ Δ++Γ₁,∙⊢e₂∶τ₂ τ₁⊛τ₂) = Cat (cast₁ eq Γ₁,Δ⊢e₁∶τ₁) (cast₁ (++ˡ Δ eq) Δ++Γ₁,∙⊢e₂∶τ₂) τ₁⊛τ₂ +cast₁ eq (Vee Γ₁,Δ⊢e₁∶τ₁ Γ₁,Δ⊢e₂∶τ₂ τ₁#τ₂) = Vee (cast₁ eq Γ₁,Δ⊢e₁∶τ₁) (cast₁ eq Γ₁,Δ⊢e₂∶τ₂) τ₁#τ₂ |