diff options
Diffstat (limited to 'src/Cfe/Language/Base.agda')
-rw-r--r-- | src/Cfe/Language/Base.agda | 123 |
1 files changed, 96 insertions, 27 deletions
diff --git a/src/Cfe/Language/Base.agda b/src/Cfe/Language/Base.agda index 2e77b11..c1ff398 100644 --- a/src/Cfe/Language/Base.agda +++ b/src/Cfe/Language/Base.agda @@ -3,47 +3,116 @@ open import Relation.Binary module Cfe.Language.Base - {a ℓ} (setoid : Setoid a ℓ) + {c ℓ} (setoid : Setoid c ℓ) where open Setoid setoid renaming (Carrier to A) -open import Data.Empty.Polymorphic +open import Data.Empty open import Data.List open import Data.List.Relation.Binary.Equality.Setoid setoid -open import Data.Nat hiding (_≤_; _⊔_) -open import Data.Product -open import Data.Sum +open import Data.Product as Product open import Function -open import Level renaming (suc to lsuc) +open import Level +import Relation.Binary.PropositionalEquality as ≡ +import Relation.Binary.Indexed.Heterogeneous as I -Language : Set (lsuc a ⊔ lsuc ℓ) -Language = List A → Set (a ⊔ ℓ) +record IsLanguage {a aℓ} (𝕃 : List A → Set a) (_≈ᴸ_ : ∀ {l} → Rel (𝕃 l) aℓ) (⤖ : ∀ {l₁ l₂} → l₁ ≋ l₂ → 𝕃 l₁ → 𝕃 l₂) : Set (c ⊔ ℓ ⊔ a ⊔ aℓ) where + field + ≈ᴸ-isEquivalence : ∀ {l} → IsEquivalence (_≈ᴸ_ {l}) + ⤖-cong : ∀ {l₁ l₂ l₁≋l₂} → (⤖ l₁≋l₂) Preserves _≈ᴸ_ {l₁} ⟶ _≈ᴸ_ {l₂} + ⤖-bijective : ∀ {l₁ l₂ l₁≋l₂} → Bijective (_≈ᴸ_ {l₁}) (_≈ᴸ_ {l₂}) (⤖ l₁≋l₂) + ⤖-refl : ∀ {l l∈𝕃} → (⤖ {l} ≋-refl l∈𝕃) ≈ᴸ l∈𝕃 + ⤖-sym : ∀ {l₁ l₂ l₁∈𝕃 l₂∈𝕃 l₁≋l₂} + → (⤖ {l₁} l₁≋l₂ l₁∈𝕃) ≈ᴸ l₂∈𝕃 + → (⤖ {l₂} (≋-sym l₁≋l₂) l₂∈𝕃) ≈ᴸ l₁∈𝕃 + ⤖-trans : ∀ {l₁ l₂ l₃ l₁∈𝕃 l₂∈𝕃 l₃∈𝕃 l₁≋l₂ l₂≋l₃} + → (⤖ {l₁} l₁≋l₂ l₁∈𝕃) ≈ᴸ l₂∈𝕃 + → (⤖ {l₂} l₂≋l₃ l₂∈𝕃) ≈ᴸ l₃∈𝕃 + → (⤖ {_} {l₃} (≋-trans l₁≋l₂ l₂≋l₃) l₁∈𝕃) ≈ᴸ l₃∈𝕃 -∅ : Language -∅ = const ⊥ + ≈ᴸ-refl : ∀ {l} → Reflexive (_≈ᴸ_ {l}) + ≈ᴸ-refl = IsEquivalence.refl ≈ᴸ-isEquivalence -{ε} : Language -{ε} = [] ≋_ + ≈ᴸ-sym : ∀ {l} → Symmetric (_≈ᴸ_ {l}) + ≈ᴸ-sym = IsEquivalence.sym ≈ᴸ-isEquivalence -{_} : A → Language -{ a } = [ a ] ≋_ + ≈ᴸ-trans : ∀ {l} → Transitive (_≈ᴸ_ {l}) + ≈ᴸ-trans = IsEquivalence.trans ≈ᴸ-isEquivalence -infix 4 _∪_ -infix 4 _∙_ + ≈ᴸ-reflexive : ∀ {l} → ≡._≡_ ⇒ (_≈ᴸ_ {l}) + ≈ᴸ-reflexive = IsEquivalence.reflexive ≈ᴸ-isEquivalence -_∪_ : Language → Language → Language -(A ∪ B) l = A l ⊎ B l + ⤖-injective : ∀ {l₁ l₂ l₁≋l₂} → Injective (_≈ᴸ_ {l₁}) (_≈ᴸ_ {l₂}) (⤖ l₁≋l₂) + ⤖-injective = proj₁ ⤖-bijective -_∙_ : Language → Language → Language -(A ∙ B) l = ∃[ l₁ ] ∃[ l₂ ] (A l₁ × B l₂ × l₁ ++ l₂ ≋ l) + ⤖-surjective : ∀ {l₁ l₂ l₁≋l₂} → Surjective (_≈ᴸ_ {l₁}) (_≈ᴸ_ {l₂}) (⤖ {l₁} l₁≋l₂) + ⤖-surjective = proj₂ ⤖-bijective -iterate : (Language → Language) → ℕ → Language → Language -iterate f ℕ.zero = id -iterate f (suc n) = f ∘ iterate f n + ⤖-isIndexedEquivalence : I.IsIndexedEquivalence 𝕃 (λ l₁∈𝕃 l₂∈𝕃 → ∃[ l₁≋l₂ ] ((⤖ l₁≋l₂ l₁∈𝕃) ≈ᴸ l₂∈𝕃)) + ⤖-isIndexedEquivalence = record + { refl = ≋-refl , ⤖-refl + ; sym = Product.map ≋-sym ⤖-sym + ; trans = Product.zip ≋-trans ⤖-trans + } -fix : (Language → Language) → Language -fix f l = ∃[ n ] iterate f n ∅ l + ⤖-reflexive : ∀ {l l∈𝕃 l∈𝕃′} → l∈𝕃 ≡.≡ l∈𝕃′ → ∃[ l≋l ]((⤖ {l} l≋l l∈𝕃) ≈ᴸ l∈𝕃′) + ⤖-reflexive = I.IsIndexedEquivalence.reflexive ⤖-isIndexedEquivalence -_≤_ : Language → Language → Set (a ⊔ ℓ) -A ≤ B = ∀ {l} → A l → B l +record Language a aℓ : Set (c ⊔ ℓ ⊔ suc (a ⊔ aℓ)) where + infix 4 _≈ᴸ_ + field + 𝕃 : List A → Set a + _≈ᴸ_ : ∀ {l} → Rel (𝕃 l) aℓ + ⤖ : ∀ {l₁ l₂} → l₁ ≋ l₂ → 𝕃 l₁ → 𝕃 l₂ + isLanguage : IsLanguage 𝕃 _≈ᴸ_ ⤖ + + open IsLanguage isLanguage public + +open Language + +infix 4 _∈_ + +_∈_ : ∀ {a aℓ} → List A → Language a aℓ → Set a +l ∈ A = 𝕃 A l + +∅ : Language 0ℓ 0ℓ +∅ = record + { 𝕃 = const ⊥ + ; _≈ᴸ_ = ≡._≡_ + ; ⤖ = const id + ; isLanguage = record + { ≈ᴸ-isEquivalence = ≡.isEquivalence + ; ⤖-cong = ≡.cong id + ; ⤖-bijective = (λ {x} → ⊥-elim x) , (λ ()) + ; ⤖-refl = λ {_} {l∈𝕃} → ⊥-elim l∈𝕃 + ; ⤖-sym = λ {_} {_} {l₁∈𝕃} → ⊥-elim l₁∈𝕃 + ; ⤖-trans = λ {_} {_} {_} {l₁∈𝕃} → ⊥-elim l₁∈𝕃 + } + } + +⦃ε⦄ : Language (c ⊔ ℓ) (c ⊔ ℓ) +⦃ε⦄ = record + { 𝕃 = [] ≋_ + ; _≈ᴸ_ = ≡._≡_ + ; ⤖ = flip ≋-trans + ; isLanguage = record + { ≈ᴸ-isEquivalence = ≡.isEquivalence + ; ⤖-cong = λ {_} {_} {l₁≋l₂} → ≡.cong (flip ≋-trans l₁≋l₂) + ; ⤖-bijective = λ {_} {_} {l₁≋l₂} → + ( (λ {x} {y} x≡y → case x , y return (λ (x , y) → x ≡.≡ y) of λ { ([] , []) → ≡.refl }) + , (λ { [] → (case l₁≋l₂ return (λ x → ∃[ y ](≋-trans y x ≡.≡ [])) of λ { [] → [] , ≡.refl})})) + ; ⤖-refl = λ {_} {[]≋l} → case []≋l return (λ []≋l → ≋-trans []≋l ≋-refl ≡.≡ []≋l) of λ {[] → ≡.refl} + ; ⤖-sym = λ {_} {_} {[]≋l₁} {[]≋l₂} {l₁≋l₂} _ → + case []≋l₁ , []≋l₂ , l₁≋l₂ + return (λ ([]≋l₁ , []≋l₂ , l₁≋l₂) → ≋-trans []≋l₂ (≋-sym l₁≋l₂) ≡.≡ []≋l₁) + of λ { ([] , [] , []) → ≡.refl } + ; ⤖-trans = λ {_} {_} {_} {[]≋l₁} {[]≋l₂} {[]≋l₃} {l₁≋l₂} {l₂≋l₃} _ _ → + case []≋l₁ , []≋l₂ , []≋l₃ , l₁≋l₂ , l₂≋l₃ + return (λ ([]≋l₁ , []≋l₂ , []≋l₃ , l₁≋l₂ , l₂≋l₃) → ≋-trans []≋l₁ (≋-trans l₁≋l₂ l₂≋l₃) ≡.≡ []≋l₃) + of λ { ([] , [] , [] , [] , []) → ≡.refl } + } + } + +_≤_ : {a aℓ b bℓ : Level} → REL (Language a aℓ) (Language b bℓ) (c ⊔ a ⊔ b) +A ≤ B = ∀ {l} → l ∈ A → l ∈ B |