summaryrefslogtreecommitdiff
path: root/src/Cfe/Language/Construct/Concatenate.agda
diff options
context:
space:
mode:
Diffstat (limited to 'src/Cfe/Language/Construct/Concatenate.agda')
-rw-r--r--src/Cfe/Language/Construct/Concatenate.agda116
1 files changed, 37 insertions, 79 deletions
diff --git a/src/Cfe/Language/Construct/Concatenate.agda b/src/Cfe/Language/Construct/Concatenate.agda
index 62acf8f..ef45432 100644
--- a/src/Cfe/Language/Construct/Concatenate.agda
+++ b/src/Cfe/Language/Construct/Concatenate.agda
@@ -10,6 +10,7 @@ open import Algebra
open import Cfe.Language over as 𝕃
open import Data.Empty
open import Data.List
+open import Data.List.Relation.Binary.Equality.Setoid over
open import Data.List.Properties
open import Data.Product as Product
open import Function
@@ -20,108 +21,65 @@ import Relation.Binary.Indexed.Heterogeneous as I
open Setoid over using () renaming (Carrier to C)
module _
- {a aℓ b bℓ}
- (A : Language a aℓ)
- (B : Language b bℓ)
+ {a b}
+ (A : Language a)
+ (B : Language b)
where
- infix 4 _≈ᶜ_
- infix 4 _∙_
+ module A = Language A
+ module B = Language B
- Concat : List C → Set (c ⊔ a ⊔ b)
- Concat l = ∃[ l₁ ] l₁ ∈ A × ∃[ l₂ ] l₂ ∈ B × l₁ ++ l₂ ≡ l
+ infix 4 _∙_
- _≈ᶜ_ : {l₁ l₂ : List C} → REL (Concat l₁) (Concat l₂) (aℓ ⊔ bℓ)
- (_ , l₁∈A , _ , l₂∈B , _) ≈ᶜ (_ , l₁′∈A , _ , l₂′∈B , _) = (≈ᴸ A l₁∈A l₁′∈A) × (≈ᴸ B l₂∈B l₂′∈B)
+ Concat : List C → Set (c ⊔ ℓ ⊔ a ⊔ b)
+ Concat l = ∃[ l₁ ] l₁ ∈ A × ∃[ l₂ ] l₂ ∈ B × l₁ ++ l₂ ≋ l
- _∙_ : Language (c ⊔ a ⊔ b) (aℓ ⊔ bℓ)
+ _∙_ : Language (c ⊔ ℓ ⊔ a ⊔ b)
_∙_ = record
- { Carrier = Concat
- ; _≈_ = _≈ᶜ_
- ; isEquivalence = record
- { refl = ≈ᴸ-refl A , ≈ᴸ-refl B
- ; sym = Product.map (≈ᴸ-sym A) (≈ᴸ-sym B)
- ; trans = Product.zip (≈ᴸ-trans A) (≈ᴸ-trans B)
+ { 𝕃 = Concat
+ ; ∈-resp-≋ = λ { l≋l′ (_ , l₁∈A , _ , l₂∈B , eq) → -, l₁∈A , -, l₂∈B , ≋-trans eq l≋l′
}
}
-isMonoid : ∀ {a aℓ} → IsMonoid 𝕃._≈_ _∙_ (𝕃.Lift (ℓ ⊔ a) aℓ {ε})
+isMonoid : ∀ {a} → IsMonoid 𝕃._≈_ _∙_ (𝕃.Lift (ℓ ⊔ a) {ε})
isMonoid {a} = record
{ isSemigroup = record
{ isMagma = record
{ isEquivalence = ≈-isEquivalence
; ∙-cong = λ X≈Y U≈V → record
- { f = λ { (l₁ , l₁∈X , l₂ , l₂∈U , l₁++l₂≡l) → l₁ , _≈_.f X≈Y l₁∈X , l₂ , _≈_.f U≈V l₂∈U , l₁++l₂≡l}
- ; f⁻¹ = λ { (l₁ , l₁∈Y , l₂ , l₂∈V , l₁++l₂≡l) → l₁ , _≈_.f⁻¹ X≈Y l₁∈Y , l₂ , _≈_.f⁻¹ U≈V l₂∈V , l₁++l₂≡l}
- ; cong₁ = λ { (x , y) → _≈_.cong₁ X≈Y x , _≈_.cong₁ U≈V y}
- ; cong₂ = λ { (x , y) → _≈_.cong₂ X≈Y x , _≈_.cong₂ U≈V y}
+ { f = λ { (_ , l₁∈X , _ , l₂∈U , eq) → -, _≈_.f X≈Y l₁∈X , -, _≈_.f U≈V l₂∈U , eq }
+ ; f⁻¹ = λ { (_ , l₁∈Y , _ , l₂∈V , eq) → -, _≈_.f⁻¹ X≈Y l₁∈Y , -, _≈_.f⁻¹ U≈V l₂∈V , eq }
}
}
; assoc = λ X Y Z → record
- { f = λ {l} → (λ { (l₁ , (l₁′ , l₁′∈X , l₂′ , l₂′∈Y , l₁′++l₂′≡l₁) , l₂ , l₂∈Z , l₁++l₂≡l) →
- l₁′ , l₁′∈X , l₂′ ++ l₂ , (l₂′ , l₂′∈Y , l₂ , l₂∈Z , refl) , (begin
- l₁′ ++ l₂′ ++ l₂ ≡˘⟨ ++-assoc l₁′ l₂′ l₂ ⟩
- (l₁′ ++ l₂′) ++ l₂ ≡⟨ cong (_++ l₂) l₁′++l₂′≡l₁ ⟩
- l₁ ++ l₂ ≡⟨ l₁++l₂≡l ⟩
- l ∎)})
- ; f⁻¹ = λ {l} → λ { (l₁ , l₁∈X , l₂ , (l₁′ , l₁′∈Y , l₂′ , l₂′∈Z , l₁′++l₂′≡l₂), l₁++l₂≡l) →
- l₁ ++ l₁′ , ( l₁ , l₁∈X , l₁′ , l₁′∈Y , refl) , l₂′ , l₂′∈Z , (begin
- (l₁ ++ l₁′) ++ l₂′ ≡⟨ ++-assoc l₁ l₁′ l₂′ ⟩
- l₁ ++ (l₁′ ++ l₂′) ≡⟨ cong (l₁ ++_) l₁′++l₂′≡l₂ ⟩
- l₁ ++ l₂ ≡⟨ l₁++l₂≡l ⟩
- l ∎)}
- ; cong₁ = Product.assocʳ
- ; cong₂ = Product.assocˡ
+ { f = λ {l} → λ { (l₁₂ , (l₁ , l₁∈X , l₂ , l₂∈Y , eq₁) , l₃ , l₃∈Z , eq₂) →
+ -, l₁∈X , -, (-, l₂∈Y , -, l₃∈Z , ≋-refl) , (begin
+ l₁ ++ l₂ ++ l₃ ≡˘⟨ ++-assoc l₁ l₂ l₃ ⟩
+ (l₁ ++ l₂) ++ l₃ ≈⟨ ++⁺ eq₁ ≋-refl ⟩
+ l₁₂ ++ l₃ ≈⟨ eq₂ ⟩
+ l ∎) }
+ ; f⁻¹ = λ {l} → λ { (l₁ , l₁∈X , l₂₃ , (l₂ , l₂∈Y , l₃ , l₃∈Z , eq₁) , eq₂) →
+ -, (-, l₁∈X , -, l₂∈Y , ≋-refl) , -, l₃∈Z , (begin
+ (l₁ ++ l₂) ++ l₃ ≡⟨ ++-assoc l₁ l₂ l₃ ⟩
+ l₁ ++ l₂ ++ l₃ ≈⟨ ++⁺ ≋-refl eq₁ ⟩
+ l₁ ++ l₂₃ ≈⟨ eq₂ ⟩
+ l ∎) }
}
}
- ; identity = (λ A → record
- { f = idˡ {a} A
- ; f⁻¹ = λ {l} l∈A → [] , lift refl , l , l∈A , refl
- ; cong₁ = λ {l₁} {l₂} {l₁∈A} {l₂∈A} → idˡ-cong {a} A {l₁} {l₂} {l₁∈A} {l₂∈A}
- ; cong₂ = λ l₁≈l₂ → lift _ , l₁≈l₂
- }) , (λ A → record
- { f = idʳ {a} A
- ; f⁻¹ = λ {l} l∈A → l , l∈A , [] , lift refl , ++-identityʳ l
- ; cong₁ = λ {l₁} {l₂} {l₁∈A} {l₂∈A} → idʳ-cong {a} A {l₁} {l₂} {l₁∈A} {l₂∈A}
- ; cong₂ = λ l₁≈l₂ → l₁≈l₂ , lift _
+ ; identity = (λ X → record
+ { f = λ { ([] , _ , _ , l₂∈X , eq) → Language.∈-resp-≋ X eq l₂∈X }
+ ; f⁻¹ = λ l∈X → -, lift refl , -, l∈X , ≋-refl
+ }) , (λ X → record
+ { f = λ { (l₁ , l₁∈X , [] , _ , eq) → Language.∈-resp-≋ X (≋-trans (≋-reflexive (sym (++-identityʳ l₁))) eq) l₁∈X }
+ ; f⁻¹ = λ {l} l∈X → -, l∈X , -, lift refl , ≋-reflexive (++-identityʳ l)
})
}
where
- open ≡.≡-Reasoning
-
- idˡ : ∀ {a aℓ} →
- (A : Language (c ⊔ ℓ ⊔ a) aℓ) →
- ∀ {l} →
- l ∈ ((𝕃.Lift (ℓ ⊔ a) aℓ {ε}) ∙ A) →
- l ∈ A
- idˡ _ ([] , _ , l , l∈A , refl) = l∈A
-
- idˡ-cong : ∀ {a aℓ} →
- (A : Language (c ⊔ ℓ ⊔ a) aℓ) →
- ∀ {l₁ l₂ l₁∈A l₂∈A} →
- ≈ᴸ ((𝕃.Lift (ℓ ⊔ a) aℓ {ε}) ∙ A) {l₁} {l₂} l₁∈A l₂∈A →
- ≈ᴸ A (idˡ {a} A l₁∈A) (idˡ {a} A l₂∈A)
- idˡ-cong _ {l₁∈A = [] , _ , l₁ , l₁∈A , refl} {[] , _ , l₂ , l₂∈A , refl} (_ , l₁≈l₂) = l₁≈l₂
-
- idʳ : ∀ {a aℓ} →
- (A : Language (c ⊔ ℓ ⊔ a) aℓ) →
- ∀ {l} →
- l ∈ (A ∙ (𝕃.Lift (ℓ ⊔ a) aℓ {ε})) →
- l ∈ A
- idʳ A (l , l∈A , [] , _ , refl) = ∈-cong A (sym (++-identityʳ l)) l∈A
-
- idʳ-cong : ∀ {a aℓ} →
- (A : Language (c ⊔ ℓ ⊔ a) aℓ) →
- ∀ {l₁ l₂ l₁∈A l₂∈A} →
- ≈ᴸ (A ∙ (𝕃.Lift (ℓ ⊔ a) aℓ {ε})) {l₁} {l₂} l₁∈A l₂∈A →
- ≈ᴸ A (idʳ {a} A l₁∈A) (idʳ {a} A l₂∈A)
- idʳ-cong A {l₁∈A = l₁ , l₁∈A , [] , _ , refl} {l₂ , l₂∈A , [] , _ , refl} (l₁≈l₂ , _) =
- ≈ᴸ-cong A (sym (++-identityʳ l₁)) (sym (++-identityʳ l₂)) l₁∈A l₂∈A l₁≈l₂
+ open import Relation.Binary.Reasoning.Setoid ≋-setoid
-∙-monotone : ∀ {a aℓ b bℓ} → _∙_ Preserves₂ _≤_ {a} {aℓ} ⟶ _≤_ {b} {bℓ} ⟶ _≤_
-∙-monotone X≤Y U≤V = record
- { f = λ {(_ , l₁∈X , _ , l₂∈U , l₁++l₂≡l) → -, X≤Y.f l₁∈X , -, U≤V.f l₂∈U , l₁++l₂≡l}
- ; cong = Product.map X≤Y.cong U≤V.cong
+∙-mono : ∀ {a b} → _∙_ Preserves₂ _≤_ {a} ⟶ _≤_ {b} ⟶ _≤_
+∙-mono X≤Y U≤V = record
+ { f = λ {(_ , l₁∈X , _ , l₂∈U , eq) → -, X≤Y.f l₁∈X , -, U≤V.f l₂∈U , eq}
}
where
module X≤Y = _≤_ X≤Y