diff options
Diffstat (limited to 'src/Cfe/Language/Indexed/Construct/Iterate.agda')
| -rw-r--r-- | src/Cfe/Language/Indexed/Construct/Iterate.agda | 27 | 
1 files changed, 16 insertions, 11 deletions
| diff --git a/src/Cfe/Language/Indexed/Construct/Iterate.agda b/src/Cfe/Language/Indexed/Construct/Iterate.agda index 5ed031b..1a37326 100644 --- a/src/Cfe/Language/Indexed/Construct/Iterate.agda +++ b/src/Cfe/Language/Indexed/Construct/Iterate.agda @@ -8,10 +8,11 @@ module Cfe.Language.Indexed.Construct.Iterate  open Setoid over using () renaming (Carrier to C) +open import Algebra  open import Cfe.Language over as L  open import Cfe.Language.Indexed.Homogeneous over  open import Data.List -open import Data.Nat as ℕ hiding (_⊔_; _≤_) +open import Data.Nat as ℕ hiding (_⊔_; _≤_; _^_)  open import Data.Product as Product  open import Function  open import Level hiding (Lift) renaming (suc to lsuc) @@ -20,11 +21,13 @@ open import Relation.Binary.PropositionalEquality as ≡  open IndexedLanguage -iter : ∀ {a} {A : Set a} → (A → A) → ℕ → A → A -iter f ℕ.zero = id -iter f (ℕ.suc n) = f ∘ iter f n +infix 9 _^_ -f-fn-x≡fn-f-x : ∀ {a} {A : Set a} (f : A → A) n x → f (iter f n x) ≡ iter f n (f x) +_^_ : ∀ {a} {A : Set a} → Op₁ A → ℕ → Op₁ A +f ^ zero = id +f ^ (suc n) = f ∘ (f ^ n) + +f-fn-x≡fn-f-x : ∀ {a} {A : Set a} (f : A → A) n x → f ((f ^ n) x) ≡ (f ^ n) (f x)  f-fn-x≡fn-f-x f ℕ.zero x = refl  f-fn-x≡fn-f-x f (suc n) x = ≡.cong f (f-fn-x≡fn-f-x f n x) @@ -32,9 +35,10 @@ module _    {a aℓ} (A : B.Setoid a aℓ)    where -  module A = B.Setoid A +  private +    module A = B.Setoid A -  f≈g⇒fn≈gn : {f g : A.Carrier → A.Carrier} → (∀ {x y} → x A.≈ y → f x A.≈ g y) → ∀ n x → iter f n x A.≈ iter g n x +  f≈g⇒fn≈gn : {f g : A.Carrier → A.Carrier} → (∀ {x y} → x A.≈ y → f x A.≈ g y) → ∀ n x → (f ^ n) x A.≈ (g ^ n) x    f≈g⇒fn≈gn f≈g ℕ.zero x = A.refl    f≈g⇒fn≈gn f≈g (suc n) x = f≈g (f≈g⇒fn≈gn f≈g n x) @@ -42,10 +46,11 @@ module _    {a aℓ₁ aℓ₂} (A : B.Poset a aℓ₁ aℓ₂)    where -  module A′ = B.Poset A +  private +    module A = B.Poset A -  f≤g⇒fn≤gn : {f g : A′.Carrier → A′.Carrier} → (∀ {x y} → x A′.≤ y → f x A′.≤ g y) → ∀ n x → iter f n x A′.≤ iter g n x -  f≤g⇒fn≤gn f≤g ℕ.zero x = A′.refl +  f≤g⇒fn≤gn : {f g : A.Carrier → A.Carrier} → (∀ {x y} → x A.≤ y → f x A.≤ g y) → ∀ n x → (f ^ n) x A.≤ (g ^ n) x +  f≤g⇒fn≤gn f≤g ℕ.zero x = A.refl    f≤g⇒fn≤gn f≤g (suc n) x = f≤g (f≤g⇒fn≤gn f≤g n x)  module _ @@ -56,7 +61,7 @@ module _      { Carrierᵢ = ℕ      ; _≈ᵢ_ = ≡._≡_      ; isEquivalenceᵢ = ≡.isEquivalence -    ; F = λ n → iter f n (Lift a ∅) +    ; F = λ n → (f ^ n) (Lift a ∅)      ; cong = λ {≡.refl → ≈-refl}      } | 
