summaryrefslogtreecommitdiff
path: root/src/Cfe/Language/Properties.agda
diff options
context:
space:
mode:
Diffstat (limited to 'src/Cfe/Language/Properties.agda')
-rw-r--r--src/Cfe/Language/Properties.agda42
1 files changed, 15 insertions, 27 deletions
diff --git a/src/Cfe/Language/Properties.agda b/src/Cfe/Language/Properties.agda
index 325b410..b2630ce 100644
--- a/src/Cfe/Language/Properties.agda
+++ b/src/Cfe/Language/Properties.agda
@@ -15,87 +15,75 @@ open import Data.List.Relation.Binary.Equality.Setoid over
open import Function
open import Level
-≈-refl : ∀ {a aℓ} → Reflexive (_≈_ {a} {aℓ})
+≈-refl : ∀ {a} → Reflexive (_≈_ {a})
≈-refl {x = A} = record
{ f = id
; f⁻¹ = id
- ; cong₁ = id
- ; cong₂ = id
}
-≈-sym : ∀ {a aℓ b bℓ} → Sym (_≈_ {a} {aℓ} {b} {bℓ}) _≈_
+≈-sym : ∀ {a b} → Sym (_≈_ {a} {b}) _≈_
≈-sym A≈B = record
{ f = A≈B.f⁻¹
; f⁻¹ = A≈B.f
- ; cong₁ = A≈B.cong₂
- ; cong₂ = A≈B.cong₁
}
where
module A≈B = _≈_ A≈B
-≈-trans : ∀ {a aℓ b bℓ c cℓ} → Trans (_≈_ {a} {aℓ}) (_≈_ {b} {bℓ} {c} {cℓ}) _≈_
+≈-trans : ∀ {a b c} → Trans (_≈_ {a}) (_≈_ {b} {c}) _≈_
≈-trans {i = A} {B} {C} A≈B B≈C = record
{ f = B≈C.f ∘ A≈B.f
; f⁻¹ = A≈B.f⁻¹ ∘ B≈C.f⁻¹
- ; cong₁ = B≈C.cong₁ ∘ A≈B.cong₁
- ; cong₂ = A≈B.cong₂ ∘ B≈C.cong₂
}
where
module A≈B = _≈_ A≈B
module B≈C = _≈_ B≈C
-≈-isEquivalence : ∀ {a aℓ} → IsEquivalence (_≈_ {a} {aℓ} {a} {aℓ})
+≈-isEquivalence : ∀ {a} → IsEquivalence (_≈_ {a})
≈-isEquivalence = record
{ refl = ≈-refl
; sym = ≈-sym
; trans = ≈-trans
}
-setoid : ∀ a aℓ → Setoid (suc (c ⊔ a ⊔ aℓ)) (c ⊔ ℓ ⊔ a ⊔ aℓ)
-setoid a aℓ = record { isEquivalence = ≈-isEquivalence {a} {aℓ} }
+setoid : ∀ a → Setoid (c ⊔ ℓ ⊔ suc a) (c ⊔ ℓ ⊔ a)
+setoid a = record { isEquivalence = ≈-isEquivalence {a} }
-≤-refl : ∀ {a aℓ} → Reflexive (_≤_ {a} {aℓ})
+≤-refl : ∀ {a} → Reflexive (_≤_ {a})
≤-refl = record
{ f = id
- ; cong = id
}
-≤-reflexive : ∀ {a aℓ b bℓ} → _≈_ {a} {aℓ} {b} {bℓ} ⇒ _≤_
+≤-reflexive : ∀ {a b} → _≈_ {a} {b} ⇒ _≤_
≤-reflexive A≈B = record
{ f = A≈B.f
- ; cong = A≈B.cong₁
}
where
module A≈B = _≈_ A≈B
-≤-trans : ∀ {a aℓ b bℓ c cℓ} → Trans (_≤_ {a} {aℓ}) (_≤_ {b} {bℓ} {c} {cℓ}) _≤_
+≤-trans : ∀ {a b c} → Trans (_≤_ {a}) (_≤_ {b} {c}) _≤_
≤-trans A≤B B≤C = record
{ f = B≤C.f ∘ A≤B.f
- ; cong = B≤C.cong ∘ A≤B.cong
}
where
module A≤B = _≤_ A≤B
module B≤C = _≤_ B≤C
-≤-antisym : ∀ {a aℓ b bℓ} → Antisym (_≤_ {a} {aℓ} {b} {bℓ}) _≤_ _≈_
+≤-antisym : ∀ {a b} → Antisym (_≤_ {a} {b}) _≤_ _≈_
≤-antisym A≤B B≤A = record
{ f = A≤B.f
; f⁻¹ = B≤A.f
- ; cong₁ = A≤B.cong
- ; cong₂ = B≤A.cong
}
where
module A≤B = _≤_ A≤B
module B≤A = _≤_ B≤A
-≤-min : ∀ {b bℓ} → Min (_≤_ {b = b} {bℓ}) ∅
+≤-min : ∀ {b} → Min (_≤_ {b = b}) ∅
≤-min A = record
{ f = λ ()
- ; cong = λ {_} {_} {}
}
-≤-isPartialOrder : ∀ a aℓ → IsPartialOrder (_≈_ {a} {aℓ}) _≤_
-≤-isPartialOrder a aℓ = record
+≤-isPartialOrder : ∀ a → IsPartialOrder (_≈_ {a}) _≤_
+≤-isPartialOrder a = record
{ isPreorder = record
{ isEquivalence = ≈-isEquivalence
; reflexive = ≤-reflexive
@@ -104,5 +92,5 @@ setoid a aℓ = record { isEquivalence = ≈-isEquivalence {a} {aℓ} }
; antisym = ≤-antisym
}
-poset : ∀ a aℓ → Poset (suc (c ⊔ a ⊔ aℓ)) (c ⊔ ℓ ⊔ a ⊔ aℓ) (c ⊔ a ⊔ aℓ)
-poset a aℓ = record { isPartialOrder = ≤-isPartialOrder a aℓ }
+poset : ∀ a → Poset (c ⊔ ℓ ⊔ suc a) (c ⊔ ℓ ⊔ a) (c ⊔ a)
+poset a = record { isPartialOrder = ≤-isPartialOrder a }