summaryrefslogtreecommitdiff
path: root/src/Relation/Binary/Construct
diff options
context:
space:
mode:
Diffstat (limited to 'src/Relation/Binary/Construct')
-rw-r--r--src/Relation/Binary/Construct/InducedPoset.agda70
1 files changed, 0 insertions, 70 deletions
diff --git a/src/Relation/Binary/Construct/InducedPoset.agda b/src/Relation/Binary/Construct/InducedPoset.agda
deleted file mode 100644
index 30363e6..0000000
--- a/src/Relation/Binary/Construct/InducedPoset.agda
+++ /dev/null
@@ -1,70 +0,0 @@
-{-# OPTIONS --without-K --safe #-}
-
-open import Relation.Binary
-
-module Relation.Binary.Construct.InducedPoset
- {a ℓ} {A : Set a}
- (_≤_ : Rel A ℓ)
- where
-
-open import Algebra
-open import Data.Product
-open import Function
-open import Level
-
-_≈_ : Rel A ℓ
-_≈_ = _≤_ -×- flip _≤_
-
-AntiCongruent₁ : Op₁ A → Set (a ⊔ ℓ)
-AntiCongruent₁ f = f Preserves _≤_ ⟶ flip _≤_
-
-AntiCongruent₂ : Op₂ A → Set (a ⊔ ℓ)
-AntiCongruent₂ ∙ = ∙ Preserves₂ _≤_ ⟶ _≤_ ⟶ flip _≤_
-
-LeftAntiCongruent : Op₂ A → Set (a ⊔ ℓ)
-LeftAntiCongruent _∙_ = ∀ {x} → (x ∙_) Preserves _≤_ ⟶ flip _≤_
-
-RightAntiCongruent : Op₂ A → Set (a ⊔ ℓ)
-RightAntiCongruent _∙_ = ∀ {x} → (_∙ x) Preserves _≤_ ⟶ flip _≤_
-
-InducedPoset : Reflexive _≤_ → Transitive _≤_ → Poset a ℓ ℓ
-InducedPoset ≤-refl ≤-trans = record
- { _≈_ = _≈_
- ; _≤_ = _≤_
- ; isPartialOrder = record
- { isPreorder = record
- { isEquivalence = record
- { refl = ≤-refl , ≤-refl
- ; sym = swap
- ; trans = zip ≤-trans (flip ≤-trans)
- }
- ; reflexive = proj₁
- ; trans = ≤-trans
- }
- ; antisym = _,_
- }
- }
-
-≤-cong→≈-cong : {f : Op₁ A} → Congruent₁ _≤_ f → Congruent₁ _≈_ f
-≤-cong→≈-cong ≤-cong = map ≤-cong ≤-cong
-
-≤-anticong→≈-cong : {f : Op₁ A} → AntiCongruent₁ f → Congruent₁ _≈_ f
-≤-anticong→≈-cong ≤-anticong = swap ∘ map ≤-anticong ≤-anticong
-
-≤-cong₂→≈-cong₂ : {∙ : Op₂ A} → Congruent₂ _≤_ ∙ → Congruent₂ _≈_ ∙
-≤-cong₂→≈-cong₂ ≤-cong₂ = zip ≤-cong₂ ≤-cong₂
-
-≤-anticong₂→≈-cong₂ : {∙ : Op₂ A} → AntiCongruent₂ ∙ → Congruent₂ _≈_ ∙
-≤-anticong₂→≈-cong₂ ≤-anticong₂ = swap ∘₂ zip ≤-anticong₂ ≤-anticong₂
-
-≤-congₗ→≈-congₗ : {∙ : Op₂ A} → LeftCongruent _≤_ ∙ → LeftCongruent _≈_ ∙
-≤-congₗ→≈-congₗ ≤-congₗ = map ≤-congₗ ≤-congₗ
-
-≤-anticongₗ→≈-congₗ : {∙ : Op₂ A} → LeftAntiCongruent ∙ → LeftCongruent _≈_ ∙
-≤-anticongₗ→≈-congₗ ≤-anticongₗ = swap ∘ map ≤-anticongₗ ≤-anticongₗ
-
-≤-congᵣ→≈-congᵣ : {∙ : Op₂ A} → RightCongruent _≤_ ∙ → RightCongruent _≈_ ∙
-≤-congᵣ→≈-congᵣ ≤-congᵣ = map ≤-congᵣ ≤-congᵣ
-
-≤-anticongᵣ→≈-congᵣ : {∙ : Op₂ A} → RightAntiCongruent ∙ → RightCongruent _≈_ ∙
-≤-anticongᵣ→≈-congᵣ ≤-anticongᵣ = swap ∘ map ≤-anticongᵣ ≤-anticongᵣ