From 9c72c8ed0c3e10b5dafb41e438285b08f244ba68 Mon Sep 17 00:00:00 2001 From: Chloe Brown Date: Sun, 21 Mar 2021 13:14:22 +0000 Subject: Prove judgement weakening. --- src/Cfe/Context/Properties.agda | 59 ++++++++++++++++++++++++++++++++++++++++- 1 file changed, 58 insertions(+), 1 deletion(-) (limited to 'src/Cfe/Context/Properties.agda') diff --git a/src/Cfe/Context/Properties.agda b/src/Cfe/Context/Properties.agda index 2acaf72..2761fae 100644 --- a/src/Cfe/Context/Properties.agda +++ b/src/Cfe/Context/Properties.agda @@ -1,7 +1,64 @@ {-# OPTIONS --without-K --safe #-} -open import Relation.Binary using (Setoid) +open import Relation.Binary using (Setoid; Symmetric) module Cfe.Context.Properties {c ℓ} (over : Setoid c ℓ) where + +open import Cfe.Context.Base over as C +open import Cfe.Type over +open import Data.Fin as F +open import Data.Nat as ℕ +open import Data.Nat.Properties +open import Data.Product +open import Data.Vec +open import Function +open import Relation.Binary.PropositionalEquality + +≋-sym : ∀ {n} → Symmetric (_≋_ {n}) +≋-sym (refl , refl , refl) = refl , refl , refl + +cast-involutive : ∀ {a A k m n} .(k≡m : k ≡ m) .(m≡n : m ≡ n) .(k≡n : _) xs → C.cast m≡n (C.cast {a} {A} k≡m xs) ≡ C.cast k≡n xs +cast-involutive {k = zero} {zero} {zero} k≡m m≡n k≡n [] = refl +cast-involutive {k = suc _} {suc _} {suc _} k≡m m≡n k≡n (x ∷ xs) = cong (x ∷_) (cast-involutive (cong ℕ.pred k≡m) (cong ℕ.pred m≡n) (cong ℕ.pred k≡n) xs) + +wkn₁-shift : ∀ {n} (Γ,Δ : Context n) i i≥m τ → shift (wkn₁ Γ,Δ i i≥m τ) ≋ wkn₁ (shift Γ,Δ) i z≤n τ +wkn₁-shift record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i i≥m τ = + refl , + eq Δ Γ m≤n i i≥m τ , + refl + where + eq : ∀ {a A m n} xs ys .(m≤n : m ℕ.≤ n) i (i≥m : toℕ i ≥ m) y → + C.cast {a} {A} + (trans (sym (+-∸-assoc m (≤-step m≤n))) (m+n∸m≡n m (suc n))) + (xs ++ C.cast (sym (+-∸-assoc 1 m≤n)) (insert ys (F.cast (+-∸-assoc 1 m≤n) (reduce≥′ (≤-step m≤n) i i≥m)) y)) ≡ + C.cast refl (insert (C.cast (trans (sym (+-∸-assoc m m≤n)) (m+n∸m≡n m n)) (xs ++ ys)) (F.cast refl i) y) + eq [] [] m≤n zero i≥m y = refl + eq [] (x ∷ ys) m≤n zero i≥m y = refl + eq [] (x ∷ ys) m≤n (suc i) i≥m y = cong (x ∷_) (eq [] ys z≤n i z≤n y) + eq {m = suc m} {suc n} (x ∷ xs) ys m≤n (suc i) (s≤s i≥m) y = cong (x ∷_) (eq xs ys (pred-mono m≤n) i i≥m y) + +wkn₂-shift : ∀ {n} (Γ,Δ : Context n) i i≤m τ → shift (wkn₂ Γ,Δ i i≤m τ) ≋ wkn₁ (shift Γ,Δ) i z≤n τ +wkn₂-shift record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i i≤m τ = + refl , + eq Δ Γ m≤n i i≤m τ , + refl + where + eq : ∀ {a A m n} xs ys .(m≤n : m ℕ.≤ n) i (i≤m : toℕ i ℕ.≤ m) y → + C.cast {a} {A} + (trans (sym (+-∸-assoc (suc m) (s≤s m≤n))) (m+n∸m≡n (suc m) (suc n))) + (insert xs (fromℕ< (s≤s i≤m)) y ++ ys) ≡ + C.cast + (sym (+-∸-assoc 1 z≤n)) + (insert (C.cast (trans (sym (+-∸-assoc m m≤n)) (m+n∸m≡n m n)) (xs ++ ys)) + (F.cast (+-∸-assoc 1 z≤n) (reduce≥′ (≤-step z≤n) i z≤n)) y) + eq [] [] m≤n zero i≤m y = refl + eq [] (x ∷ ys) m≤n zero i≤m y = cong (λ z → y ∷ x ∷ z) (sym (cast-involutive refl refl refl ys)) + eq {m = suc m} {suc n} (x ∷ xs) ys m≤n zero i≤m y = + cong (λ z → y ∷ x ∷ z) + (sym (cast-involutive (trans (sym (+-∸-assoc m (pred-mono m≤n))) (m+n∸m≡n m n)) + refl + (trans (sym (+-∸-assoc m (pred-mono m≤n))) (m+n∸m≡n m n)) + (xs ++ ys))) + eq {m = suc m} {suc n} (x ∷ xs) ys m≤n (suc i) (s≤s i≤m) y = cong (x ∷_) (eq xs ys (pred-mono m≤n) i i≤m y) -- cgit v1.2.3