From a92f724a46a78af74121c44bbb06c4ec51f9555e Mon Sep 17 00:00:00 2001 From: Chloe Brown Date: Tue, 23 Mar 2021 12:19:30 +0000 Subject: Replace transfer with shift. Prove substitution in the unguarded context. --- src/Cfe/Context/Properties.agda | 224 +++++++++++++++++++++++----------------- 1 file changed, 130 insertions(+), 94 deletions(-) (limited to 'src/Cfe/Context/Properties.agda') diff --git a/src/Cfe/Context/Properties.agda b/src/Cfe/Context/Properties.agda index 230c18b..11441a7 100644 --- a/src/Cfe/Context/Properties.agda +++ b/src/Cfe/Context/Properties.agda @@ -1,6 +1,6 @@ {-# OPTIONS --without-K --safe #-} -open import Relation.Binary using (Setoid; Symmetric) +open import Relation.Binary using (Setoid; Symmetric; Transitive) module Cfe.Context.Properties {c ℓ} (over : Setoid c ℓ) @@ -20,102 +20,138 @@ open import Relation.Binary.PropositionalEquality ≋-sym : ∀ {n} → Symmetric (_≋_ {n}) ≋-sym (refl , refl , refl) = refl , refl , refl -cast-involutive : ∀ {a A k m n} .(k≡m : k ≡ m) .(m≡n : m ≡ n) .(k≡n : _) xs → C.cast m≡n (C.cast {a} {A} k≡m xs) ≡ C.cast k≡n xs -cast-involutive {k = zero} {zero} {zero} k≡m m≡n k≡n [] = refl -cast-involutive {k = suc _} {suc _} {suc _} k≡m m≡n k≡n (x ∷ xs) = cong (x ∷_) (cast-involutive (cong ℕ.pred k≡m) (cong ℕ.pred m≡n) (cong ℕ.pred k≡n) xs) +≋-trans : ∀ {n} → Transitive (_≋_ {n}) +≋-trans (refl , refl , refl) (refl , refl , refl) = refl , refl , refl -cast-insert : ∀ {a A m n} xs .(m≡n : _) i j .(_ : toℕ i ≡ toℕ j) y → C.cast {a} {A} {suc m} {suc n} (cong suc m≡n) (insert xs i y) ≡ insert (C.cast m≡n xs) j y -cast-insert [] m≡n zero zero _ y = refl -cast-insert (x ∷ xs) m≡n zero zero _ y = refl -cast-insert {m = suc _} {n = suc _} (x ∷ xs) m≡n (suc i) (suc j) i≡j y = cong (x ∷_) (cast-insert xs (cong ℕ.pred m≡n) i j (cong ℕ.pred i≡j) y) - -wkn₁-shift : ∀ {n} (Γ,Δ : Context n) i i≥m τ → shift (wkn₁ Γ,Δ i i≥m τ) ≋ wkn₁ (shift Γ,Δ) i z≤n τ -wkn₁-shift record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i i≥m τ = - refl , - eq Δ Γ m≤n i i≥m τ , - refl +shift≤-wkn₁-comm : ∀ {n i j} Γ,Δ i≤m j≥m τ → + shift≤ {i = i} (wkn₁ {n} {j} Γ,Δ j≥m τ) i≤m ≋ + wkn₁ (shift≤ Γ,Δ i≤m) (≤-trans i≤m j≥m) τ +shift≤-wkn₁-comm record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i≤m j≥m τ = + refl , eq Γ Δ m≤n i≤m j≥m τ , refl where - eq : ∀ {a A m n} xs ys .(m≤n : m ℕ.≤ n) i (i≥m : toℕ i ≥ m) y → - C.cast {a} {A} - (trans (sym (+-∸-assoc m (≤-step m≤n))) (m+n∸m≡n m (suc n))) - (xs ++ C.cast (sym (+-∸-assoc 1 m≤n)) (insert ys (F.cast (+-∸-assoc 1 m≤n) (reduce≥′ (≤-step m≤n) i i≥m)) y)) ≡ - C.cast refl (insert (C.cast (trans (sym (+-∸-assoc m m≤n)) (m+n∸m≡n m n)) (xs ++ ys)) (F.cast refl i) y) - eq [] [] m≤n zero i≥m y = refl - eq [] (x ∷ ys) m≤n zero i≥m y = refl - eq [] (x ∷ ys) m≤n (suc i) i≥m y = cong (x ∷_) (eq [] ys z≤n i z≤n y) - eq {m = suc m} {suc n} (x ∷ xs) ys m≤n (suc i) (s≤s i≥m) y = cong (x ∷_) (eq xs ys (pred-mono m≤n) i i≥m y) - -wkn₂-shift : ∀ {n} (Γ,Δ : Context n) i i≤m τ → shift (wkn₂ Γ,Δ i i≤m τ) ≋ wkn₁ (shift Γ,Δ) i z≤n τ -wkn₂-shift record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i i≤m τ = - refl , - eq Δ Γ m≤n i i≤m τ , - refl + eq : ∀ {a A n m i j} xs ys (m≤n : m ℕ.≤ n) (i≤m : i ℕ.≤ m) (j≥m : toℕ {suc n} j ≥ m) y → + drop′ {a} {A} (≤-step m≤n) i≤m (ys ++ (insert′ xs (s≤s m≤n) (reduce≥′ (≤-step m≤n) j≥m) y)) ≡ + insert′ (drop′ m≤n i≤m (ys ++ xs)) (s≤s (≤-trans i≤m m≤n)) (reduce≥′ (≤-step (≤-trans i≤m m≤n)) (≤-trans i≤m j≥m)) y + eq _ [] z≤n z≤n _ _ = refl + eq {j = suc _} xs (x ∷ ys) (s≤s m≤n) z≤n (s≤s j≥m) y = cong (x ∷_) (eq xs ys m≤n z≤n j≥m y) + eq {j = suc _} xs (_ ∷ ys) (s≤s m≤n) (s≤s i≤m) (s≤s j≥m) y = eq xs ys m≤n i≤m j≥m y + +shift≤-wkn₂-comm-≤ : ∀ {n i j} Γ,Δ i≤j j≤m τ → + shift≤ {i = i} (wkn₂ {n} {j} Γ,Δ j≤m τ) (≤-trans i≤j (≤-step j≤m)) ≋ + wkn₁ (shift≤ Γ,Δ (≤-trans i≤j j≤m)) i≤j τ +shift≤-wkn₂-comm-≤ record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i≤j j≤m τ = + refl , eq₁ Γ Δ m≤n i≤j j≤m τ , eq₂ Δ i≤j j≤m τ where - eq : ∀ {a A m n} xs ys .(m≤n : m ℕ.≤ n) i (i≤m : toℕ i ℕ.≤ m) y → - C.cast {a} {A} - (trans (sym (+-∸-assoc (suc m) (s≤s m≤n))) (m+n∸m≡n (suc m) (suc n))) - (insert xs (fromℕ< (s≤s i≤m)) y ++ ys) ≡ - C.cast - (sym (+-∸-assoc 1 z≤n)) - (insert (C.cast (trans (sym (+-∸-assoc m m≤n)) (m+n∸m≡n m n)) (xs ++ ys)) - (F.cast (+-∸-assoc 1 z≤n) (reduce≥′ (≤-step z≤n) i z≤n)) y) - eq [] [] m≤n zero i≤m y = refl - eq [] (x ∷ ys) m≤n zero i≤m y = cong (λ z → y ∷ x ∷ z) (sym (cast-involutive refl refl refl ys)) - eq {m = suc m} {suc n} (x ∷ xs) ys m≤n zero i≤m y = - cong (λ z → y ∷ x ∷ z) - (sym (cast-involutive (trans (sym (+-∸-assoc m (pred-mono m≤n))) (m+n∸m≡n m n)) - refl - (trans (sym (+-∸-assoc m (pred-mono m≤n))) (m+n∸m≡n m n)) - (xs ++ ys))) - eq {m = suc m} {suc n} (x ∷ xs) ys m≤n (suc i) (s≤s i≤m) y = cong (x ∷_) (eq xs ys (pred-mono m≤n) i i≤m y) - -rotate₁-shift : ∀ {n} (Γ,Δ : Context n) i j i≥m i≤j → rotate₁ (shift Γ,Δ) i j z≤n i≤j ≋ shift (rotate₁ Γ,Δ i j i≥m i≤j) -rotate₁-shift record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i j i≥m i≤j = - refl , - eq Γ Δ m≤n i j i≥m i≤j , - refl + eq₁ : ∀ {a A n m i j} xs ys (m≤n : m ℕ.≤ n) (i≤j : i ℕ.≤ toℕ {suc n} j) (j≤m : toℕ j ℕ.≤ m) y → + drop′ {a} {A} (s≤s m≤n) (≤-trans i≤j (≤-step j≤m)) (insert ys (fromℕ< (s≤s j≤m)) y ++ xs) ≡ + insert′ + (drop′ m≤n (≤-trans i≤j j≤m) (ys ++ xs)) + (s≤s (≤-trans (≤-trans i≤j j≤m) m≤n)) + (reduce≥′ (≤-step (≤-trans (≤-trans i≤j j≤m) m≤n)) i≤j) + y + eq₁ {j = zero} _ _ _ z≤n _ _ = refl + eq₁ {j = suc j} xs (x ∷ ys) (s≤s m≤n) z≤n (s≤s j≤m) y = cong (x ∷_) (eq₁ xs ys m≤n z≤n j≤m y) + eq₁ {j = suc j} xs (x ∷ ys) (s≤s m≤n) (s≤s i≤j) (s≤s j≤m) y = eq₁ xs ys m≤n i≤j j≤m y + + eq₂ : ∀ {a A n m i j} ys (i≤j : i ℕ.≤ toℕ {suc n} j) (j≤m : toℕ j ℕ.≤ m) y → + take′ {a} {A} (≤-trans i≤j (≤-step j≤m)) (insert ys (fromℕ< (s≤s j≤m)) y) ≡ + take′ (≤-trans i≤j j≤m) ys + eq₂ {j = zero} _ z≤n _ _ = refl + eq₂ {j = suc _} _ z≤n _ _ = refl + eq₂ {j = suc zero} (_ ∷ _) (s≤s z≤n) (s≤s _) _ = refl + eq₂ {j = suc (suc _)} (x ∷ ys) (s≤s i≤j) (s≤s j≤m) y = cong (x ∷_) (eq₂ ys i≤j j≤m y) + +shift≤-wkn₂-comm-> : ∀ {n i j} Γ,Δ i≤j j≤m τ → + shift≤ {i = suc j} (wkn₂ {n} {i} Γ,Δ (≤-trans i≤j j≤m) τ) (s≤s j≤m) ≋ + wkn₂ (shift≤ Γ,Δ j≤m) i≤j τ +shift≤-wkn₂-comm-> record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i≤j j≤m τ = refl , eq₁ Γ Δ m≤n i≤j j≤m τ , eq₂ Δ m≤n i≤j j≤m τ where - eq : ∀ {a A m n} xs ys .(m≤n : m ℕ.≤ n) i j i≥m i≤j → - rotate {a} {A} i j i≤j (C.cast (trans (sym (+-∸-assoc m m≤n)) (m+n∸m≡n m n)) (ys ++ xs)) ≡ - C.cast (trans (sym (+-∸-assoc m m≤n)) (m+n∸m≡n m n)) (ys ++ rotate (reduce≥′ m≤n i i≥m) (reduce≥′ m≤n j (≤-trans i≥m i≤j)) (reduce≥′-mono m≤n i j i≥m i≤j) xs) - eq {m = zero} {suc _} (x ∷ xs) [] _ zero j _ _ = sym (cast-insert xs refl j j refl x) - eq {m = zero} (x ∷ xs) [] _ (suc i) (suc j) _ i≤j = cong (x ∷_) (eq xs [] z≤n i j z≤n (pred-mono i≤j)) - eq {m = suc _} {suc _} xs (y ∷ ys) m≤n (suc i) (suc j) (s≤s i≥m) (s≤s i≤j) = cong (y ∷_) (eq xs ys (pred-mono m≤n) i j i≥m i≤j) - -transfer-cons : ∀ {n} (Γ,Δ : Context n) i j i