From 13e0839831a528d26478a3a94c7470204460cce4 Mon Sep 17 00:00:00 2001 From: Chloe Brown Date: Mon, 29 Mar 2021 18:08:09 +0100 Subject: Introduce < for Languages. Move around some definitions. --- src/Cfe/Derivation/Properties.agda | 32 ++++++++------------------------ 1 file changed, 8 insertions(+), 24 deletions(-) (limited to 'src/Cfe/Derivation/Properties.agda') diff --git a/src/Cfe/Derivation/Properties.agda b/src/Cfe/Derivation/Properties.agda index 303d2f9..e89d9f1 100644 --- a/src/Cfe/Derivation/Properties.agda +++ b/src/Cfe/Derivation/Properties.agda @@ -6,11 +6,11 @@ module Cfe.Derivation.Properties {c ℓ} (over : Setoid c ℓ) where -open Setoid over renaming (Carrier to C) +open Setoid over renaming (Carrier to C; _≈_ to _∼_) open import Cfe.Context over hiding (_≋_) open import Cfe.Expression over hiding (_≋_) -open import Cfe.Language over hiding (≤-refl) +open import Cfe.Language over hiding (≤-refl; _≈_; _<_) open import Cfe.Language.Construct.Concatenate over using (Concat) open import Cfe.Language.Indexed.Construct.Iterate over open import Cfe.Judgement over @@ -40,10 +40,10 @@ open import Relation.Binary.PropositionalEquality as ≡ hiding (subst₂; setoi private infix 4 _<_ _<_ : Rel (List C × Expression 0) _ - _<_ = ×-Lex _≡_ ℕ._<_ ℕ._<_ on (Product.map length rank) + _<_ = ×-Lex _≡_ ℕ._<_ _<ᵣₐₙₖ_ on (Product.map₁ length) <-wellFounded : WellFounded _<_ - <-wellFounded = On.wellFounded (Product.map length rank) (×-wellFounded <ⁿ-wellFounded <ⁿ-wellFounded) + <-wellFounded = On.wellFounded (Product.map₁ length) (×-wellFounded <ⁿ-wellFounded <ᵣₐₙₖ-wellFounded) l∈⟦e⟧⇒e⤇l : ∀ {e τ} → ∙,∙ ⊢ e ∶ τ → ∀ {l} → l ∈ ⟦ e ⟧ [] → e ⤇ l l∈⟦e⟧⇒e⤇l {e} {τ} ∙,∙⊢e∶τ {l} l∈⟦e⟧ = All.wfRec <-wellFounded _ Pred go (l , e) ∙,∙⊢e∶τ l∈⟦e⟧ @@ -82,24 +82,6 @@ l∈⟦e⟧⇒e⤇l {e} {τ} ∙,∙⊢e∶τ {l} l∈⟦e⟧ = All.wfRec <-well ... | inj₂ ∣l₁∣≡0 with Concat.l₁ l∈⟦e₁∙e₂⟧ | Concat.l₁∈A l∈⟦e₁∙e₂⟧ | (_⊛_.τ₁.Null τ₁⊛τ₂) | _⊛_.¬n₁ τ₁⊛τ₂ | _⊨_.n⇒n (soundness ∙,∙⊢e₁∶τ₁ [] (ext (λ ()))) | ∣l₁∣≡0 ... | [] | ε∈A | false | _ | n⇒n | refl = ⊥-elim (n⇒n ε∈A) - e₁