From 8abb1b5601fabf5e7560d08faa6e633e60663e0a Mon Sep 17 00:00:00 2001 From: Chloe Brown Date: Thu, 29 Apr 2021 20:58:04 +0100 Subject: Finally prove that e [ μ e / zero ] ≈ μ e. MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Complete proof of generator. --- src/Cfe/Function/Power.agda | 37 ------------------------------------- 1 file changed, 37 deletions(-) delete mode 100644 src/Cfe/Function/Power.agda (limited to 'src/Cfe/Function/Power.agda') diff --git a/src/Cfe/Function/Power.agda b/src/Cfe/Function/Power.agda deleted file mode 100644 index da3b335..0000000 --- a/src/Cfe/Function/Power.agda +++ /dev/null @@ -1,37 +0,0 @@ -{-# OPTIONS --without-K --safe #-} - -module Cfe.Function.Power where - -open import Data.Nat using (ℕ) -open import Data.Product using (∃-syntax; _×_) -open import Function using (id; _∘_) -open import Level using (Level; _⊔_) -open import Relation.Binary using (Rel; REL) -open import Relation.Binary.PropositionalEquality using (cong; _≡_) - -private - variable - a : Level - A : Set a - -infix 10 _^_ - ------------------------------------------------------------------------- --- Definition - -_^_ : (A → A) → ℕ → A → A -f ^ ℕ.zero = id -f ^ ℕ.suc n = f ∘ f ^ n - ------------------------------------------------------------------------- --- Properties - -f∼g⇒fⁿ∼gⁿ : - ∀ {a b ℓ} {A : Set a} {B : Set b} (_∼_ : REL A B ℓ) {f g 0A 0B} → - 0A ∼ 0B → (∀ {x y} → x ∼ y → f x ∼ g y) → ∀ n → (f ^ n) 0A ∼ (g ^ n) 0B -f∼g⇒fⁿ∼gⁿ _ refl ext ℕ.zero = refl -f∼g⇒fⁿ∼gⁿ ∼ refl ext (ℕ.suc n) = ext (f∼g⇒fⁿ∼gⁿ ∼ refl ext n) - -fⁿf≡fⁿ⁺¹ : ∀ (f : A → A) n → (f ^ n) ∘ f ≡ f ^ (ℕ.suc n) -fⁿf≡fⁿ⁺¹ f ℕ.zero = _≡_.refl -fⁿf≡fⁿ⁺¹ f (ℕ.suc n) = cong (f ∘_) (fⁿf≡fⁿ⁺¹ f n) -- cgit v1.2.3