From 16afd9dff6798509a1d654b0f06e409353e01180 Mon Sep 17 00:00:00 2001 From: Chloe Brown Date: Sat, 20 Mar 2021 18:18:31 +0000 Subject: Change judgement to use variable contexts. Add some useful context transformations. --- src/Cfe/Judgement/Base.agda | 102 +++++++++++++++++++++++++++++++++++++------- 1 file changed, 87 insertions(+), 15 deletions(-) (limited to 'src/Cfe/Judgement/Base.agda') diff --git a/src/Cfe/Judgement/Base.agda b/src/Cfe/Judgement/Base.agda index 475968c..4bb7b67 100644 --- a/src/Cfe/Judgement/Base.agda +++ b/src/Cfe/Judgement/Base.agda @@ -6,16 +6,44 @@ module Cfe.Judgement.Base {c ℓ} (over : Setoid c ℓ) where -open import Cfe.Expression over renaming (shift to shiftₑ) +open import Cfe.Expression over hiding (rotate) open import Cfe.Type over renaming (_∙_ to _∙ₜ_; _∨_ to _∨ₜ_) open import Cfe.Type.Construct.Lift over +open import Data.Empty using (⊥-elim) open import Data.Fin as F -open import Data.Fin.Properties +open import Data.Fin.Properties hiding (≤-trans) open import Data.Nat as ℕ hiding (_⊔_) open import Data.Nat.Properties +open import Data.Product open import Data.Vec hiding (_⊛_) renaming (lookup to lookup′) +open import Function open import Level hiding (Lift) renaming (suc to lsuc) open import Relation.Binary.PropositionalEquality +open import Relation.Nullary + +private + insert′ : ∀ {a A m n} → Vec {a} A (n ∸ m) → m ℕ.≤ n → m ≢ 0 → (i : Fin (n ∸ ℕ.pred m)) → A → Vec A (n ∸ ℕ.pred m) + insert′ {a} {A} {ℕ.zero} {n} xs m≤n m≢0 i x = ⊥-elim (m≢0 refl) + insert′ {a} {A} {suc ℕ.zero} {suc _} xs _ _ F.zero x = x ∷ xs + insert′ {a} {A} {suc ℕ.zero} {suc (suc n)} (y ∷ xs) _ _ (suc i) x = y ∷ insert′ {m = suc ℕ.zero} {suc n} xs (s≤s z≤n) (λ ()) i x + insert′ {a} {A} {suc (suc m)} {suc ℕ.zero} xs m≤n _ i x = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) m≤n) + insert′ {a} {A} {suc (suc m)} {suc (suc n)} xs m≤n _ i x = insert′ {m = suc m} xs (pred-mono m≤n) (λ ()) i x + + reduce≥′ : ∀ {m n} → .(m ℕ.≤ n) → (i : Fin n) → .(toℕ i ≥ m) → Fin (n ∸ m) + reduce≥′ {ℕ.zero} {n} m≤n i i≥m = i + reduce≥′ {suc m} {suc n} m≤n (suc i) i≥m = reduce≥′ (pred-mono m≤n) i (pred-mono i≥m) + + reduce≥′-mono : ∀ {m n} → .(m≤n : m ℕ.≤ n) → (i j : Fin n) → .(i≥m : toℕ i ≥ m) → (i≤j : i F.≤ j) → reduce≥′ m≤n i i≥m F.≤ reduce≥′ m≤n j (≤-trans i≥m i≤j) + reduce≥′-mono {ℕ.zero} {n} m≤n i j i≥m i≤j = i≤j + reduce≥′-mono {suc m} {suc n} m≤n (suc i) (suc j) i≥m i≤j = reduce≥′-mono (pred-mono m≤n) i j (pred-mono i≥m) (pred-mono i≤j) + + remove′ : ∀ {a A m} → Vec {a} A m → .(m ≢ 0) → Fin m → Vec A (ℕ.pred m) + remove′ (x ∷ xs) m≢0 F.zero = xs + remove′ (x ∷ y ∷ xs) m≢0 (suc i) = x ∷ remove′ (y ∷ xs) (λ ()) i + + rotate : ∀ {a A n} → (i j : Fin n) → .(i F.≤ j) → Vec {a} A n → Vec A n + rotate F.zero j i≤j (x ∷ xs) = insert xs j x + rotate (suc i) (suc j) i≤j (x ∷ xs) = x ∷ (rotate i j (pred-mono i≤j) xs) record Context n : Set (c ⊔ lsuc ℓ) where field @@ -24,20 +52,64 @@ record Context n : Set (c ⊔ lsuc ℓ) where Γ : Vec (Type ℓ ℓ) (n ∸ m) Δ : Vec (Type ℓ ℓ) m --- Fin n → Fin n∸m - lookup : (i : Fin n) → toℕ i ≥ m → Type ℓ ℓ - lookup i i≥m = lookup′ Γ (reduce≥ - (F.cast (begin-equality - n ≡˘⟨ m+n∸m≡n m n ⟩ - m ℕ.+ n ∸ m ≡⟨ +-∸-assoc m m≤n ⟩ - m ℕ.+ (n ∸ m) ∎) i) - (begin - m ≤⟨ i≥m ⟩ - toℕ i ≡˘⟨ toℕ-cast _ i ⟩ - toℕ (F.cast _ i) ∎)) - where - open ≤-Reasoning + lookup i i≥m = lookup′ Γ (reduce≥′ m≤n i i≥m) + +wkn₁ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → toℕ i ≥ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n) +wkn₁ Γ,Δ i i≥m τ = record + { m≤n = ≤-step m≤n + ; Γ = subst (Vec (Type ℓ ℓ)) (sym (+-∸-assoc 1 m≤n)) (insert Γ (F.cast (+-∸-assoc 1 m≤n) (reduce≥′ (≤-step m≤n) i i≥m)) τ) + ; Δ = Δ + } + where + open Context Γ,Δ + +wkn₂ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → toℕ i ℕ.≤ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n) +wkn₂ Γ,Δ i i