From 4e0ceac75e6d9940f0e11f93a3815448df258c70 Mon Sep 17 00:00:00 2001 From: Chloe Brown Date: Sat, 20 Mar 2021 18:36:24 +0000 Subject: Separate Context into a different module. --- src/Cfe/Judgement/Base.agda | 124 ++------------------------------------------ 1 file changed, 5 insertions(+), 119 deletions(-) (limited to 'src/Cfe/Judgement/Base.agda') diff --git a/src/Cfe/Judgement/Base.agda b/src/Cfe/Judgement/Base.agda index 4bb7b67..6b42598 100644 --- a/src/Cfe/Judgement/Base.agda +++ b/src/Cfe/Judgement/Base.agda @@ -6,128 +6,14 @@ module Cfe.Judgement.Base {c ℓ} (over : Setoid c ℓ) where -open import Cfe.Expression over hiding (rotate) +open import Cfe.Context over +open import Cfe.Expression over open import Cfe.Type over renaming (_∙_ to _∙ₜ_; _∨_ to _∨ₜ_) open import Cfe.Type.Construct.Lift over -open import Data.Empty using (⊥-elim) open import Data.Fin as F -open import Data.Fin.Properties hiding (≤-trans) -open import Data.Nat as ℕ hiding (_⊔_) -open import Data.Nat.Properties -open import Data.Product -open import Data.Vec hiding (_⊛_) renaming (lookup to lookup′) -open import Function +open import Data.Nat hiding (_⊔_) +open import Data.Vec hiding (_⊛_) open import Level hiding (Lift) renaming (suc to lsuc) -open import Relation.Binary.PropositionalEquality -open import Relation.Nullary - -private - insert′ : ∀ {a A m n} → Vec {a} A (n ∸ m) → m ℕ.≤ n → m ≢ 0 → (i : Fin (n ∸ ℕ.pred m)) → A → Vec A (n ∸ ℕ.pred m) - insert′ {a} {A} {ℕ.zero} {n} xs m≤n m≢0 i x = ⊥-elim (m≢0 refl) - insert′ {a} {A} {suc ℕ.zero} {suc _} xs _ _ F.zero x = x ∷ xs - insert′ {a} {A} {suc ℕ.zero} {suc (suc n)} (y ∷ xs) _ _ (suc i) x = y ∷ insert′ {m = suc ℕ.zero} {suc n} xs (s≤s z≤n) (λ ()) i x - insert′ {a} {A} {suc (suc m)} {suc ℕ.zero} xs m≤n _ i x = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) m≤n) - insert′ {a} {A} {suc (suc m)} {suc (suc n)} xs m≤n _ i x = insert′ {m = suc m} xs (pred-mono m≤n) (λ ()) i x - - reduce≥′ : ∀ {m n} → .(m ℕ.≤ n) → (i : Fin n) → .(toℕ i ≥ m) → Fin (n ∸ m) - reduce≥′ {ℕ.zero} {n} m≤n i i≥m = i - reduce≥′ {suc m} {suc n} m≤n (suc i) i≥m = reduce≥′ (pred-mono m≤n) i (pred-mono i≥m) - - reduce≥′-mono : ∀ {m n} → .(m≤n : m ℕ.≤ n) → (i j : Fin n) → .(i≥m : toℕ i ≥ m) → (i≤j : i F.≤ j) → reduce≥′ m≤n i i≥m F.≤ reduce≥′ m≤n j (≤-trans i≥m i≤j) - reduce≥′-mono {ℕ.zero} {n} m≤n i j i≥m i≤j = i≤j - reduce≥′-mono {suc m} {suc n} m≤n (suc i) (suc j) i≥m i≤j = reduce≥′-mono (pred-mono m≤n) i j (pred-mono i≥m) (pred-mono i≤j) - - remove′ : ∀ {a A m} → Vec {a} A m → .(m ≢ 0) → Fin m → Vec A (ℕ.pred m) - remove′ (x ∷ xs) m≢0 F.zero = xs - remove′ (x ∷ y ∷ xs) m≢0 (suc i) = x ∷ remove′ (y ∷ xs) (λ ()) i - - rotate : ∀ {a A n} → (i j : Fin n) → .(i F.≤ j) → Vec {a} A n → Vec A n - rotate F.zero j i≤j (x ∷ xs) = insert xs j x - rotate (suc i) (suc j) i≤j (x ∷ xs) = x ∷ (rotate i j (pred-mono i≤j) xs) - -record Context n : Set (c ⊔ lsuc ℓ) where - field - m : ℕ - m≤n : m ℕ.≤ n - Γ : Vec (Type ℓ ℓ) (n ∸ m) - Δ : Vec (Type ℓ ℓ) m - - lookup : (i : Fin n) → toℕ i ≥ m → Type ℓ ℓ - lookup i i≥m = lookup′ Γ (reduce≥′ m≤n i i≥m) - -wkn₁ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → toℕ i ≥ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n) -wkn₁ Γ,Δ i i≥m τ = record - { m≤n = ≤-step m≤n - ; Γ = subst (Vec (Type ℓ ℓ)) (sym (+-∸-assoc 1 m≤n)) (insert Γ (F.cast (+-∸-assoc 1 m≤n) (reduce≥′ (≤-step m≤n) i i≥m)) τ) - ; Δ = Δ - } - where - open Context Γ,Δ - -wkn₂ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → toℕ i ℕ.≤ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n) -wkn₂ Γ,Δ i i