From 01ec93c5a03f6c4c660aa593b4c00afccc48907a Mon Sep 17 00:00:00 2001 From: Chloe Brown Date: Mon, 8 Feb 2021 17:40:04 +0000 Subject: Make languages records with more properties. --- src/Cfe/Language/Construct/Concatenate.agda | 59 +++++++++++++++++++++++++++++ 1 file changed, 59 insertions(+) create mode 100644 src/Cfe/Language/Construct/Concatenate.agda (limited to 'src/Cfe/Language/Construct/Concatenate.agda') diff --git a/src/Cfe/Language/Construct/Concatenate.agda b/src/Cfe/Language/Construct/Concatenate.agda new file mode 100644 index 0000000..b75f822 --- /dev/null +++ b/src/Cfe/Language/Construct/Concatenate.agda @@ -0,0 +1,59 @@ +{-# OPTIONS --without-K --safe #-} + +open import Relation.Binary +import Cfe.Language + +module Cfe.Language.Construct.Concatenate + {c ℓ a aℓ b bℓ} (setoid : Setoid c ℓ) + (A : Cfe.Language.Language setoid a aℓ) + (B : Cfe.Language.Language setoid b bℓ) + where + +open import Data.Empty +open import Data.List +open import Data.List.Relation.Binary.Equality.Setoid setoid +open import Data.Product as Product +open import Function +open import Level +open import Cfe.Language setoid +open Language + +open Setoid setoid renaming (Carrier to C) + +infix 4 _≈ᶜ_ +infix 4 _∙_ + +Concat : List C → Set (c ⊔ ℓ ⊔ a ⊔ b) +Concat l = ∃[ l₁ ](l₁ ∈ A × ∃[ l₂ ](l₂ ∈ B × (l₁ ++ l₂ ≋ l))) + +_≈ᶜ_ : {l : List C} → Rel (Concat l) (c ⊔ ℓ ⊔ aℓ ⊔ bℓ) +(l₁ , l₁∈A , l₂ , l₂∈B , l₁++l₂) ≈ᶜ (l₁′ , l₁′∈A , l₂′ , l₂′∈B , l₁′++l₂′) = + ∃[ l₁≋l₁′ ](_≈ᴸ_ A (⤖ A l₁≋l₁′ l₁∈A) l₁′∈A) + × ∃[ l₂≋l₂′ ](_≈ᴸ_ B (⤖ B l₂≋l₂′ l₂∈B) l₂′∈B) + +⤖ᶜ : {l₁ l₂ : List C} → l₁ ≋ l₂ → Concat l₁ → Concat l₂ +⤖ᶜ l₁≋l₂ = map₂ (map₂ (map₂ (map₂ (flip ≋-trans l₁≋l₂)))) + +_∙_ : Language (c ⊔ ℓ ⊔ a ⊔ b) (c ⊔ ℓ ⊔ aℓ ⊔ bℓ) +_∙_ = record + { 𝕃 = Concat + ; _≈ᴸ_ = _≈ᶜ_ + ; ⤖ = ⤖ᶜ + ; isLanguage = record + { ≈ᴸ-isEquivalence = record + { refl = (≋-refl , ⤖-refl A) , (≋-refl , ⤖-refl B) + ; sym = Product.map (Product.map ≋-sym (⤖-sym A)) + (Product.map ≋-sym (⤖-sym B)) + ; trans = Product.zip (Product.zip ≋-trans (⤖-trans A)) + (Product.zip ≋-trans (⤖-trans B)) + } + ; ⤖-cong = id + ; ⤖-bijective = λ {_} {_} {l₁≋l₂} → id , λ l₂∈𝕃 → + ⤖ᶜ (≋-sym l₁≋l₂) l₂∈𝕃 , (≋-refl , ⤖-refl A) , (≋-refl , ⤖-refl B) + ; ⤖-refl = (≋-refl , ⤖-refl A) , (≋-refl , ⤖-refl B) + ; ⤖-sym = Product.map (Product.map ≋-sym (⤖-sym A)) + (Product.map ≋-sym (⤖-sym B)) + ; ⤖-trans = Product.zip (Product.zip ≋-trans (⤖-trans A)) + (Product.zip ≋-trans (⤖-trans B)) + } + } -- cgit v1.2.3