From da429008d25ac87ec67a4fb18a5cbee0ba756bcf Mon Sep 17 00:00:00 2001 From: Chloe Brown Date: Mon, 5 Apr 2021 14:31:57 +0100 Subject: Clean-up Language hierarchy. --- src/Cfe/Language/Construct/Concatenate.agda | 247 ---------------------------- 1 file changed, 247 deletions(-) delete mode 100644 src/Cfe/Language/Construct/Concatenate.agda (limited to 'src/Cfe/Language/Construct/Concatenate.agda') diff --git a/src/Cfe/Language/Construct/Concatenate.agda b/src/Cfe/Language/Construct/Concatenate.agda deleted file mode 100644 index c7baa48..0000000 --- a/src/Cfe/Language/Construct/Concatenate.agda +++ /dev/null @@ -1,247 +0,0 @@ -{-# OPTIONS --without-K --safe #-} - -open import Relation.Binary - -module Cfe.Language.Construct.Concatenate - {c ℓ} (over : Setoid c ℓ) - where - -open import Algebra -open import Cfe.Language over as 𝕃 -open import Data.Empty -open import Data.List hiding (null) -open import Data.List.Relation.Binary.Equality.Setoid over -open import Data.List.Properties -open import Data.Product as Product -open import Data.Unit using (⊤) -open import Function -open import Level -import Relation.Binary.PropositionalEquality as ≡ -open import Relation.Nullary -open import Relation.Unary hiding (_∈_) -import Relation.Binary.Indexed.Heterogeneous as I - -open Setoid over using () renaming (Carrier to C; _≈_ to _∼_; refl to ∼-refl; sym to ∼-sym; trans to ∼-trans) - -module Compare where - data Compare : List C → List C → List C → List C → Set (c ⊔ ℓ) where - back : ∀ {xs zs} → (xs≋zs : xs ≋ zs) → Compare [] xs [] zs - left : ∀ {w ws xs z zs} → Compare ws xs [] zs → (w∼z : w ∼ z) → Compare (w ∷ ws) xs [] (z ∷ zs) - right : ∀ {x xs y ys zs} → Compare [] xs ys zs → (x∼y : x ∼ y) → Compare [] (x ∷ xs) (y ∷ ys) zs - front : ∀ {w ws xs y ys zs} → Compare ws xs ys zs → (w∼y : w ∼ y) → Compare (w ∷ ws) xs (y ∷ ys) zs - - isLeft : ∀ {ws xs ys zs} → Compare ws xs ys zs → Set - isLeft (back xs≋zs) = ⊥ - isLeft (left cmp w∼z) = ⊤ - isLeft (right cmp x∼y) = ⊥ - isLeft (front cmp w∼y) = isLeft cmp - - isRight : ∀ {ws xs ys zs} → Compare ws xs ys zs → Set - isRight (back xs≋zs) = ⊥ - isRight (left cmp w∼z) = ⊥ - isRight (right cmp x∼y) = ⊤ - isRight (front cmp w∼y) = isRight cmp - - isEqual : ∀ {ws xs ys zs} → Compare ws xs ys zs → Set - isEqual (back xs≋zs) = ⊤ - isEqual (left cmp w∼z) = ⊥ - isEqual (right cmp x∼y) = ⊥ - isEqual (front cmp w∼y) = isEqual cmp - - : ∀ {ws xs ys zs} → (cmp : Compare ws xs ys zs) → Tri (isLeft cmp) (isEqual cmp) (isRight cmp) - (back xs≋zs) = tri≈ id _ id - (left cmp w∼z) = tri< _ id id - (right cmp x∼y) = tri> id id _ - (front cmp w∼y) = cmp - - compare : ∀ ws xs ys zs → ws ++ xs ≋ ys ++ zs → Compare ws xs ys zs - compare [] xs [] zs eq = back eq - compare [] (x ∷ xs) (y ∷ ys) zs (x∼y ∷ eq) = right (compare [] xs ys zs eq) x∼y - compare (w ∷ ws) xs [] (z ∷ zs) (w∼z ∷ eq) = left (compare ws xs [] zs eq) w∼z - compare (w ∷ ws) xs (y ∷ ys) zs (w∼y ∷ eq) = front (compare ws xs ys zs eq) w∼y - - left-split : ∀ {ws xs ys zs} → (cmp : Compare ws xs ys zs) → isLeft cmp → ∃[ w ] ∃[ ws′ ] ws ≋ ys ++ w ∷ ws′ × w ∷ ws′ ++ xs ≋ zs - left-split (left (back xs≋zs) w∼z) _ = -, -, ≋-refl , w∼z ∷ xs≋zs - left-split (left (left cmp w′∼z′) w∼z) _ with left-split (left cmp w′∼z′) _ - ... | (_ , _ , eq₁ , eq₂) = -, -, ∼-refl ∷ eq₁ , w∼z ∷ eq₂ - left-split (front cmp w∼y) l with left-split cmp l - ... | (_ , _ , eq₁ , eq₂) = -, -, w∼y ∷ eq₁ , eq₂ - - right-split : ∀ {ws xs ys zs} → (cmp : Compare ws xs ys zs) → isRight cmp → ∃[ y ] ∃[ ys′ ] ws ++ y ∷ ys′ ≋ ys × xs ≋ y ∷ ys′ ++ zs - right-split (right (back xs≋zs) x∼y) _ = -, -, ≋-refl , x∼y ∷ xs≋zs - right-split (right (right cmp x′∼y′) x∼y) _ with right-split (right cmp x′∼y′) _ - ... | (_ , _ , eq₁ , eq₂) = -, -, ∼-refl ∷ eq₁ , x∼y ∷ eq₂ - right-split (front cmp w∼y) r with right-split cmp r - ... | (_ , _ , eq₁ , eq₂) = -, -, w∼y ∷ eq₁ , eq₂ - - eq-split : ∀ {ws xs ys zs} → (cmp : Compare ws xs ys zs) → isEqual cmp → ws ≋ ys × xs ≋ zs - eq-split (back xs≋zs) e = [] , xs≋zs - eq-split (front cmp w∼y) e = map₁ (w∼y ∷_) (eq-split cmp e) - -module _ - {a b} - (A : Language a) - (B : Language b) - where - - private - module A = Language A - module B = Language B - - infix 7 _∙_ - - record Concat (l : List C) : Set (c ⊔ ℓ ⊔ a ⊔ b) where - field - l₁ : List C - l₂ : List C - l₁∈A : l₁ ∈ A - l₂∈B : l₂ ∈ B - eq : l₁ ++ l₂ ≋ l - - _∙_ : Language (c ⊔ ℓ ⊔ a ⊔ b) - _∙_ = record - { 𝕃 = Concat - ; ∈-resp-≋ = λ - { l≋l′ record { l₁ = _ ; l₂ = _ ; l₁∈A = l₁∈A ; l₂∈B = l₂∈B ; eq = eq } → record - { l₁∈A = l₁∈A ; l₂∈B = l₂∈B ; eq = ≋-trans eq l≋l′ } - } - } - -∙-cong : ∀ {a} → Congruent₂ _≈_ (_∙_ {c ⊔ ℓ ⊔ a}) -∙-cong X≈Y U≈V = record - { f = λ - { record { l₁∈A = l₁∈X ; l₂∈B = l₂∈Y ; eq = eq } → record - { l₁∈A = X≈Y.f l₁∈X - ; l₂∈B = U≈V.f l₂∈Y - ; eq = eq - } - } - ; f⁻¹ = λ - { record { l₁∈A = l₁∈Y ; l₂∈B = l₂∈V ; eq = eq } → record - { l₁∈A = X≈Y.f⁻¹ l₁∈Y - ; l₂∈B = U≈V.f⁻¹ l₂∈V - ; eq = eq - } - } - } - where - module X≈Y = _≈_ X≈Y - module U≈V = _≈_ U≈V - -∙-assoc : ∀ {a b c} (A : Language a) (B : Language b) (C : Language c) → - (A ∙ B) ∙ C ≈ A ∙ (B ∙ C) -∙-assoc A B C = record - { f = λ - { record - { l₂ = l₃ - ; l₁∈A = record { l₁ = l₁ ; l₂ = l₂ ; l₁∈A = l₁∈A ; l₂∈B = l₂∈B ; eq = eq₁ } - ; l₂∈B = l₃∈C - ; eq = eq₂ - } → record - { l₁∈A = l₁∈A - ; l₂∈B = record - { l₁∈A = l₂∈B - ; l₂∈B = l₃∈C - ; eq = ≋-refl - } - ; eq = ≋-trans (≋-sym (≋-reflexive (++-assoc l₁ l₂ l₃))) (≋-trans (++⁺ eq₁ ≋-refl) eq₂) - } - } - ; f⁻¹ = λ - { record - { l₁ = l₁ - ; l₁∈A = l₁∈A - ; l₂∈B = record { l₁ = l₂ ; l₂ = l₃ ; l₁∈A = l₂∈B ; l₂∈B = l₃∈C ; eq = eq₁ } - ; eq = eq₂ - } → record - { l₁∈A = record - { l₁∈A = l₁∈A - ; l₂∈B = l₂∈B - ; eq = ≋-refl - } - ; l₂∈B = l₃∈C - ; eq = ≋-trans (≋-reflexive (++-assoc l₁ l₂ l₃)) (≋-trans (++⁺ ≋-refl eq₁) eq₂) - } - } - } - -∙-identityˡ : ∀ {a} → LeftIdentity _≈_ (𝕃.Lift (ℓ ⊔ a) {ε}) _∙_ -∙-identityˡ X = record - { f = λ - { record { l₁ = [] ; l₂∈B = l∈X ; eq = eq } → X.∈-resp-≋ eq l∈X - } - ; f⁻¹ = λ l∈X → record - { l₁∈A = lift ≡.refl - ; l₂∈B = l∈X - ; eq = ≋-refl - } - } - where - module X = Language X - -∙-identityʳ : ∀ {a} → RightIdentity _≈_ (𝕃.Lift (ℓ ⊔ a) {ε}) _∙_ -∙-identityʳ X = record - { f = λ - { record { l₁ = l₁ ; l₂ = [] ; l₁∈A = l∈X ; eq = eq } → X.∈-resp-≋ (≋-trans (≋-sym (≋-reflexive (++-identityʳ l₁))) eq) l∈X - } - ; f⁻¹ = λ {l} l∈X → record - { l₁∈A = l∈X - ; l₂∈B = lift ≡.refl - ; eq = ≋-reflexive (++-identityʳ l) - } - } - where - module X = Language X - -∙-mono : ∀ {a b} → _∙_ Preserves₂ _≤_ {a} ⟶ _≤_ {b} ⟶ _≤_ -∙-mono X≤Y U≤V = record - { f = λ - { record { l₁∈A = l₁∈A ; l₂∈B = l₂∈B ; eq = eq } → record - { l₁∈A = X≤Y.f l₁∈A - ; l₂∈B = U≤V.f l₂∈B - ; eq = eq - } - } - } - where - module X≤Y = _≤_ X≤Y - module U≤V = _≤_ U≤V - -∙-unique : ∀ {a b} (A : Language a) (B : Language b) → Empty (flast A ∩ first B) → ¬ (null A) → ∀ {l} → (l∈A∙B l∈A∙B′ : l ∈ A ∙ B) → Concat.l₁ l∈A∙B ≋ Concat.l₁ l∈A∙B′ × Concat.l₂ l∈A∙B ≋ Concat.l₂ l∈A∙B′ -∙-unique A B ∄[l₁∩f₂] ¬n₁ l∈A∙B l∈A∙B′ with Compare.compare (Concat.l₁ l∈A∙B) (Concat.l₂ l∈A∙B) (Concat.l₁ l∈A∙B′) (Concat.l₂ l∈A∙B′) (≋-trans (Concat.eq l∈A∙B) (≋-sym (Concat.eq l∈A∙B′))) -... | cmp with Compare. cmp -... | tri< l _ _ = ⊥-elim (∄[l₁∩f₂] w ((-, (λ { ≡.refl → ¬n₁ (Concat.l₁∈A l∈A∙B′)}) , (Concat.l₁∈A l∈A∙B′) , -, A.∈-resp-≋ eq₃ (Concat.l₁∈A l∈A∙B)) , (-, B.∈-resp-≋ (≋-sym eq₄) (Concat.l₂∈B l∈A∙B′)))) - where - module A = Language A - module B = Language B - lsplit = Compare.left-split cmp l - w = proj₁ lsplit - eq₃ = (proj₁ ∘ proj₂ ∘ proj₂) lsplit - eq₄ = (proj₂ ∘ proj₂ ∘ proj₂) lsplit -... | tri≈ _ e _ = Compare.eq-split cmp e -... | tri> _ _ r = ⊥-elim (∄[l₁∩f₂] w ((-, (λ { ≡.refl → ¬n₁ (Concat.l₁∈A l∈A∙B)}) , (Concat.l₁∈A l∈A∙B) , -, A.∈-resp-≋ (≋-sym eq₃) (Concat.l₁∈A l∈A∙B′)) , (-, (B.∈-resp-≋ eq₄ (Concat.l₂∈B l∈A∙B))))) - where - module A = Language A - module B = Language B - rsplit = Compare.right-split cmp r - w = proj₁ rsplit - eq₃ = (proj₁ ∘ proj₂ ∘ proj₂) rsplit - eq₄ = (proj₂ ∘ proj₂ ∘ proj₂) rsplit - -isMagma : ∀ {a} → IsMagma _≈_ (_∙_ {c ⊔ ℓ ⊔ a}) -isMagma {a} = record - { isEquivalence = ≈-isEquivalence - ; ∙-cong = ∙-cong {a} - } - -isSemigroup : ∀ {a} → IsSemigroup _≈_ (_∙_ {c ⊔ ℓ ⊔ a}) -isSemigroup {a} = record - { isMagma = isMagma {a} - ; assoc = ∙-assoc - } - -isMonoid : ∀ {a} → IsMonoid _≈_ _∙_ (𝕃.Lift (ℓ ⊔ a) {ε}) -isMonoid {a} = record - { isSemigroup = isSemigroup {a} - ; identity = ∙-identityˡ {a} , ∙-identityʳ {a} - } -- cgit v1.2.3