From ff3600687249a19ae63353f7791b137094f5a5a1 Mon Sep 17 00:00:00 2001 From: Chloe Brown Date: Thu, 18 Feb 2021 19:04:09 +0000 Subject: Another redefinition of Language. --- src/Cfe/Language/Construct/Single.agda | 71 ++++++++++++++-------------------- 1 file changed, 29 insertions(+), 42 deletions(-) (limited to 'src/Cfe/Language/Construct/Single.agda') diff --git a/src/Cfe/Language/Construct/Single.agda b/src/Cfe/Language/Construct/Single.agda index f54e015..daa1628 100644 --- a/src/Cfe/Language/Construct/Single.agda +++ b/src/Cfe/Language/Construct/Single.agda @@ -5,56 +5,47 @@ open import Relation.Binary import Relation.Binary.PropositionalEquality as ≡ module Cfe.Language.Construct.Single - {a ℓ} (setoid : Setoid a ℓ) - (≈-trans-bijₗ : ∀ {a b c : Setoid.Carrier setoid} - → {b≈c : Setoid._≈_ setoid b c} - → Bijective ≡._≡_ ≡._≡_ (flip (Setoid.trans setoid {a}) b≈c)) - (≈-trans-reflₗ : ∀ {a b : Setoid.Carrier setoid} {a≈b : Setoid._≈_ setoid a b} - → Setoid.trans setoid a≈b (Setoid.refl setoid) ≡.≡ a≈b) - (≈-trans-symₗ : ∀ {a b c : Setoid.Carrier setoid} - → {a≈b : Setoid._≈_ setoid a b} - → {a≈c : Setoid._≈_ setoid a c} - → {b≈c : Setoid._≈_ setoid b c} - → Setoid.trans setoid a≈b b≈c ≡.≡ a≈c - → Setoid.trans setoid a≈c (Setoid.sym setoid b≈c) ≡.≡ a≈b) - (≈-trans-transₗ : ∀ {a b c d : Setoid.Carrier setoid} - → {a≈b : Setoid._≈_ setoid a b} - → {a≈c : Setoid._≈_ setoid a c} - → {a≈d : Setoid._≈_ setoid a d} - → {b≈c : Setoid._≈_ setoid b c} - → {c≈d : Setoid._≈_ setoid c d} - → Setoid.trans setoid a≈b b≈c ≡.≡ a≈c - → Setoid.trans setoid a≈c c≈d ≡.≡ a≈d - → Setoid.trans setoid a≈b (Setoid.trans setoid b≈c c≈d) ≡.≡ a≈d) + {c ℓ} (over : Setoid c ℓ) + (≈-trans-bijₗ : ∀ {a b c b≈c} + → Bijective ≡._≡_ ≡._≡_ (flip (Setoid.trans over {a} {b} {c}) b≈c)) + (≈-trans-reflₗ : ∀ {a b a≈b} + → Setoid.trans over {a} a≈b (Setoid.refl over {b}) ≡.≡ a≈b) + (≈-trans-symₗ : ∀ {a b c a≈b a≈c b≈c} + → Setoid.trans over {a} {b} {c} a≈b b≈c ≡.≡ a≈c + → Setoid.trans over a≈c (Setoid.sym over b≈c) ≡.≡ a≈b) + (≈-trans-transₗ : ∀ {a b c d a≈b a≈c a≈d b≈c c≈d} + → Setoid.trans over {a} {b} a≈b b≈c ≡.≡ a≈c + → Setoid.trans over {a} {c} {d} a≈c c≈d ≡.≡ a≈d + → Setoid.trans over a≈b (Setoid.trans over b≈c c≈d) ≡.≡ a≈d) where -open Setoid setoid renaming (Carrier to A) +open Setoid over renaming (Carrier to C) -open import Cfe.Language setoid +open import Cfe.Language over hiding (_≈_) open import Data.List -open import Data.List.Relation.Binary.Equality.Setoid setoid +open import Data.List.Relation.Binary.Equality.Setoid over open import Data.Product as Product open import Level private - ∷-inj : {a b : A} {l₁ l₂ : List A} {a≈b a≈b′ : a ≈ b} {l₁≋l₂ l₁≋l₂′ : l₁ ≋ l₂} → ≡._≡_ {A = a ∷ l₁ ≋ b ∷ l₂} (a≈b ∷ l₁≋l₂) (a≈b′ ∷ l₁≋l₂′) → (a≈b ≡.≡ a≈b′) × (l₁≋l₂ ≡.≡ l₁≋l₂′) + ∷-inj : {a b : C} {l₁ l₂ : List C} {a≈b a≈b′ : a ≈ b} {l₁≋l₂ l₁≋l₂′ : l₁ ≋ l₂} → ≡._≡_ {A = a ∷ l₁ ≋ b ∷ l₂} (a≈b ∷ l₁≋l₂) (a≈b′ ∷ l₁≋l₂′) → (a≈b ≡.≡ a≈b′) × (l₁≋l₂ ≡.≡ l₁≋l₂′) ∷-inj ≡.refl = ≡.refl , ≡.refl - ≋-trans-injₗ : {x l₁ l₂ : List A} → {l₁≋l₂ : l₁ ≋ l₂} → Injective ≡._≡_ ≡._≡_ (flip (≋-trans {x}) l₁≋l₂) + ≋-trans-injₗ : {x l₁ l₂ : List C} → {l₁≋l₂ : l₁ ≋ l₂} → Injective ≡._≡_ ≡._≡_ (flip (≋-trans {x}) l₁≋l₂) ≋-trans-injₗ {_} {_} {_} {_} {[]} {[]} _ = ≡.refl ≋-trans-injₗ {_} {_} {_} {_ ∷ _} {_ ∷ _} {_ ∷ _} = uncurry (≡.cong₂ _∷_) ∘ Product.map (proj₁ ≈-trans-bijₗ) ≋-trans-injₗ ∘ ∷-inj - ≋-trans-surₗ : {x l₁ l₂ : List A} → {l₁≋l₂ : l₁ ≋ l₂} → Surjective {A = x ≋ l₁} ≡._≡_ ≡._≡_ (flip (≋-trans {x}) l₁≋l₂) + ≋-trans-surₗ : {x l₁ l₂ : List C} → {l₁≋l₂ : l₁ ≋ l₂} → Surjective {A = x ≋ l₁} ≡._≡_ ≡._≡_ (flip (≋-trans {x}) l₁≋l₂) ≋-trans-surₗ {_} {_} {_} {[]} [] = [] , ≡.refl ≋-trans-surₗ {_} {_} {_} {_ ∷ _} (a≈c ∷ x≋l₂) = Product.zip _∷_ (≡.cong₂ _∷_) (proj₂ ≈-trans-bijₗ a≈c) (≋-trans-surₗ x≋l₂) - ≋-trans-reflₗ : {l₁ l₂ : List A} {l₁≋l₂ : l₁ ≋ l₂} → ≋-trans l₁≋l₂ ≋-refl ≡.≡ l₁≋l₂ + ≋-trans-reflₗ : {l₁ l₂ : List C} {l₁≋l₂ : l₁ ≋ l₂} → ≋-trans l₁≋l₂ ≋-refl ≡.≡ l₁≋l₂ ≋-trans-reflₗ {_} {_} {[]} = ≡.refl ≋-trans-reflₗ {_} {_} {a≈b ∷ l₁≋l₂} = ≡.cong₂ _∷_ ≈-trans-reflₗ ≋-trans-reflₗ - ≋-trans-symₗ : {l₁ l₂ l₃ : List A} {l₁≋l₂ : l₁ ≋ l₂} {l₁≋l₃ : l₁ ≋ l₃} {l₂≋l₃ : l₂ ≋ l₃} + ≋-trans-symₗ : {l₁ l₂ l₃ : List C} {l₁≋l₂ : l₁ ≋ l₂} {l₁≋l₃ : l₁ ≋ l₃} {l₂≋l₃ : l₂ ≋ l₃} → ≋-trans l₁≋l₂ l₂≋l₃ ≡.≡ l₁≋l₃ → ≋-trans l₁≋l₃ (≋-sym l₂≋l₃) ≡.≡ l₁≋l₂ ≋-trans-symₗ {_} {_} {_} {[]} {[]} {[]} _ = ≡.refl @@ -62,7 +53,7 @@ private ∘ Product.map ≈-trans-symₗ ≋-trans-symₗ ∘ ∷-inj - ≋-trans-transₗ : {l₁ l₂ l₃ l₄ : List A} + ≋-trans-transₗ : {l₁ l₂ l₃ l₄ : List C} → {l₁≋l₂ : l₁ ≋ l₂} {l₁≋l₃ : l₁ ≋ l₃} {l₁≋l₄ : l₁ ≋ l₄} {l₂≋l₃ : l₂ ≋ l₃} {l₃≋l₄ : l₃ ≋ l₄} → ≋-trans l₁≋l₂ l₂≋l₃ ≡.≡ l₁≋l₃ → ≋-trans l₁≋l₃ l₃≋l₄ ≡.≡ l₁≋l₄ @@ -72,17 +63,13 @@ private ∘₂ uncurry (Product.zip ≈-trans-transₗ ≋-trans-transₗ) ∘₂ curry (Product.map ∷-inj ∷-inj) -{_} : List A → Language (a ⊔ ℓ) (a ⊔ ℓ) -{ l } = record - { 𝕃 = l ≋_ - ; _≈ᴸ_ = ≡._≡_ - ; ⤖ = flip ≋-trans - ; isLanguage = record - { ≈ᴸ-isEquivalence = ≡.isEquivalence - ; ⤖-cong = λ {_} {_} {l₁≋l₂} → ≡.cong (flip ≋-trans l₁≋l₂) - ; ⤖-bijective = ≋-trans-injₗ , ≋-trans-surₗ - ; ⤖-refl = ≋-trans-reflₗ - ; ⤖-sym = ≋-trans-symₗ - ; ⤖-trans = ≋-trans-transₗ +{_} : C → Language (c ⊔ ℓ) (c ⊔ ℓ) +{ c } = record + { Carrier = [ c ] ≋_ + ; _≈_ = λ l≋m l≋n → ∃[ m≋n ] ≋-trans l≋m m≋n ≡.≡ l≋n + ; isEquivalence = record + { refl = ≋-refl , ≋-trans-reflₗ + ; sym = Product.map ≋-sym ≋-trans-symₗ + ; trans = Product.zip ≋-trans ≋-trans-transₗ } } -- cgit v1.2.3