From 01ec93c5a03f6c4c660aa593b4c00afccc48907a Mon Sep 17 00:00:00 2001 From: Chloe Brown Date: Mon, 8 Feb 2021 17:40:04 +0000 Subject: Make languages records with more properties. --- src/Cfe/Language/Construct/Union.agda | 102 ++++++++++++++++++++++++++++++++++ 1 file changed, 102 insertions(+) create mode 100644 src/Cfe/Language/Construct/Union.agda (limited to 'src/Cfe/Language/Construct/Union.agda') diff --git a/src/Cfe/Language/Construct/Union.agda b/src/Cfe/Language/Construct/Union.agda new file mode 100644 index 0000000..44d4c3f --- /dev/null +++ b/src/Cfe/Language/Construct/Union.agda @@ -0,0 +1,102 @@ +{-# OPTIONS --without-K --safe #-} + +open import Relation.Binary +import Cfe.Language + +module Cfe.Language.Construct.Union + {c ℓ a aℓ b bℓ} (setoid : Setoid c ℓ) + (A : Cfe.Language.Language setoid a aℓ) + (B : Cfe.Language.Language setoid b bℓ) + where + +open import Data.Empty +open import Data.List +open import Data.List.Relation.Binary.Equality.Setoid setoid +open import Data.Product as Product +open import Data.Sum as Sum +open import Function +open import Level +open import Cfe.Language setoid +open Language + +open Setoid setoid renaming (Carrier to C) + +infix 4 _≈ᵁ_ +infix 4 _∪_ + +Union : List C → Set (a ⊔ b) +Union l = 𝕃 A l ⊎ 𝕃 B l + +_≈ᵁ_ : {l : List C} → Rel (Union l) (aℓ ⊔ bℓ) +(inj₁ x) ≈ᵁ (inj₁ y) = Lift bℓ (_≈ᴸ_ A x y) +(inj₁ _) ≈ᵁ (inj₂ _) = Lift (aℓ ⊔ bℓ) ⊥ +(inj₂ _) ≈ᵁ (inj₁ _) = Lift (aℓ ⊔ bℓ) ⊥ +(inj₂ x) ≈ᵁ (inj₂ y) = Lift aℓ (_≈ᴸ_ B x y) + +⤖ᵁ : {l₁ l₂ : List C} → l₁ ≋ l₂ → Union l₁ → Union l₂ +⤖ᵁ l₁≋l₂ = Sum.map (⤖ A l₁≋l₂) (⤖ B l₁≋l₂) + +_∪_ : Language (a ⊔ b) (aℓ ⊔ bℓ) +_∪_ = record + { 𝕃 = Union + ; _≈ᴸ_ = _≈ᵁ_ + ; ⤖ = ⤖ᵁ + ; isLanguage = record + { ≈ᴸ-isEquivalence = record + { refl = λ {x} → case x return (λ x → _≈ᵁ_ x x) of λ + { (inj₁ x) → lift (≈ᴸ-refl A) + ; (inj₂ y) → lift (≈ᴸ-refl B) + } + ; sym = λ {x} {y} x≈ᵁy → + case (∃[ x ](∃[ y ](x ≈ᵁ y)) ∋ x , y , x≈ᵁy) + return (λ (x , y , _) → y ≈ᵁ x) of λ + { (inj₁ x , inj₁ y , lift x≈ᵁy) → lift (≈ᴸ-sym A x≈ᵁy) + ; (inj₂ y₁ , inj₂ y , lift x≈ᵁy) → lift (≈ᴸ-sym B x≈ᵁy) + } + ; trans = λ {i} {j} {k} i≈ᵁj j≈ᵁk → + case ∃[ i ](∃[ j ](∃[ k ](i ≈ᵁ j × j ≈ᵁ k))) ∋ i , j , k , i≈ᵁj , j≈ᵁk + return (λ (i , _ , k , _) → i ≈ᵁ k) of λ + { (inj₁ _ , inj₁ _ , inj₁ _ , lift x≈ᵁy , lift y≈ᵁz) → + lift (≈ᴸ-trans A x≈ᵁy y≈ᵁz) + ; (inj₂ _ , inj₂ _ , inj₂ _ , lift x≈ᵁy , lift y≈ᵁz) → + lift (≈ᴸ-trans B x≈ᵁy y≈ᵁz) + } + } + ; ⤖-cong = λ {_} {_} {l₁≋l₂} {x} {y} x≈ᵁy → + case ∃[ x ](∃[ y ](x ≈ᵁ y)) ∋ x , y , x≈ᵁy + return (λ (x , y , _) → (_≈ᵁ_ on ⤖ᵁ l₁≋l₂) x y) of λ + { (inj₁ x , inj₁ y , lift x≈ᵁy) → lift (⤖-cong A x≈ᵁy) + ; (inj₂ x , inj₂ y , lift x≈ᵁy) → lift (⤖-cong B x≈ᵁy) + } + ; ⤖-bijective = λ {_} {_} {l₁≋l₂} → + ( λ {x} {y} x≈ᵁy → + case ∃[ x ](∃[ y ]((_≈ᵁ_ on ⤖ᵁ l₁≋l₂) x y)) ∋ x , y , x≈ᵁy + return (λ (x , y , _) → x ≈ᵁ y) of λ + { (inj₁ x , inj₁ y , lift x≈ᵁy) → lift (⤖-injective A x≈ᵁy) + ; (inj₂ x , inj₂ y , lift x≈ᵁy) → lift (⤖-injective B x≈ᵁy) + }) + , ( λ + { (inj₁ x) → Product.map inj₁ lift (⤖-surjective A x) + ; (inj₂ x) → Product.map inj₂ lift (⤖-surjective B x) + }) + ; ⤖-refl = λ {_} {x} → case x return (λ x → ⤖ᵁ ≋-refl x ≈ᵁ x) of λ + { (inj₁ x) → lift (⤖-refl A) + ; (inj₂ y) → lift (⤖-refl B) + } + ; ⤖-sym = λ {_} {_} {x} {y} {l₁≋l₂} x≈ᵁy → + case ∃[ x ](∃[ y ](⤖ᵁ l₁≋l₂ x ≈ᵁ y)) ∋ x , y , x≈ᵁy + return (λ (x , y , _) → ⤖ᵁ (≋-sym l₁≋l₂) y ≈ᵁ x) of λ + { (inj₁ x , inj₁ y , lift x≈ᵁy) → lift (⤖-sym A x≈ᵁy) + ; (inj₂ x , inj₂ y , lift x≈ᵁy) → lift (⤖-sym B x≈ᵁy) + } + ; ⤖-trans = λ {_} {_} {_} {x} {y} {z} {l₁≋l₂} {l₂≋l₃} x≈ᵁy y≈ᵁz → + case (∃[ x ](∃[ y ](∃[ z ]((⤖ᵁ l₁≋l₂ x ≈ᵁ y) × (⤖ᵁ l₂≋l₃ y ≈ᵁ z))))) ∋ + x , y , z , x≈ᵁy , y≈ᵁz + return (λ (x , _ , z , _ , _) → ⤖ᵁ (≋-trans l₁≋l₂ l₂≋l₃) x ≈ᵁ z) of λ + { (inj₁ x , inj₁ y , inj₁ z , lift x≈ᵁy , lift y≈ᵁz) → + lift (⤖-trans A x≈ᵁy y≈ᵁz) + ; (inj₂ x , inj₂ y , inj₂ z , lift x≈ᵁy , lift y≈ᵁz) → + lift (⤖-trans B x≈ᵁy y≈ᵁz) + } + } + } -- cgit v1.2.3