From adad5280af0d81a2f171df619e9c7169dcb43a02 Mon Sep 17 00:00:00 2001 From: Chloe Brown Date: Sat, 27 Mar 2021 20:32:03 +0000 Subject: Introduce non-terminating proof of derivation existence. --- src/Cfe/Parse/Base.agda | 12 +++++++----- src/Cfe/Parse/Properties.agda | 41 +++++++++++++++++++++++++++++++++++++++++ 2 files changed, 48 insertions(+), 5 deletions(-) (limited to 'src/Cfe/Parse') diff --git a/src/Cfe/Parse/Base.agda b/src/Cfe/Parse/Base.agda index 50e085a..0f8ad21 100644 --- a/src/Cfe/Parse/Base.agda +++ b/src/Cfe/Parse/Base.agda @@ -6,18 +6,20 @@ module Cfe.Parse.Base {c ℓ} (over : Setoid c ℓ) where -open Setoid over renaming (Carrier to C) +open Setoid over renaming (Carrier to C; _≈_ to _∼_) -open import Cfe.Expression over +open import Cfe.Expression over hiding (_≋_) open import Data.Fin open import Data.List +open import Data.List.Relation.Binary.Equality.Setoid over +open import Level using (_⊔_) infix 4 _⤇_ -data _⤇_ : Expression 0 → List C → Set c where +data _⤇_ : Expression 0 → List C → Set (c ⊔ ℓ) where Eps : ε ⤇ [] - Char : ∀ {c} → Char c ⤇ [ c ] - Cat : ∀ {e₁ e₂ l₁ l₂} → e₁ ⤇ l₁ → e₂ ⤇ l₂ → e₁ ∙ e₂ ⤇ l₁ ++ l₂ + Char : ∀ {c y} → c ∼ y → Char c ⤇ [ y ] + Cat : ∀ {e₁ e₂ l₁ l₂ l} → e₁ ⤇ l₁ → e₂ ⤇ l₂ → l₁ ++ l₂ ≋ l → e₁ ∙ e₂ ⤇ l Veeˡ : ∀ {e₁ e₂ l} → e₁ ⤇ l → e₁ ∨ e₂ ⤇ l Veeʳ : ∀ {e₁ e₂ l} → e₂ ⤇ l → e₁ ∨ e₂ ⤇ l Fix : ∀ {e l} → e [ μ e / zero ] ⤇ l → μ e ⤇ l diff --git a/src/Cfe/Parse/Properties.agda b/src/Cfe/Parse/Properties.agda index 7803f82..830b0f2 100644 --- a/src/Cfe/Parse/Properties.agda +++ b/src/Cfe/Parse/Properties.agda @@ -5,3 +5,44 @@ open import Relation.Binary using (Setoid) module Cfe.Parse.Properties {c ℓ} (over : Setoid c ℓ) where + +open Setoid over renaming (Carrier to C) + +open import Cfe.Context over +open import Cfe.Expression over +open import Cfe.Language over +open import Cfe.Language.Indexed.Construct.Iterate over +open import Cfe.Judgement over +open import Cfe.Parse.Base over +open import Cfe.Type over using (_⊛_; _⊨_) +open import Data.Bool using (T; not; true; false) +open import Data.Empty using (⊥-elim) +open import Data.Fin as F +open import Data.List hiding (null) +open import Data.List.Relation.Binary.Equality.Setoid over +open import Data.Nat as ℕ hiding (_⊔_; _^_) +open import Data.Product +open import Data.Sum +open import Data.Vec +open import Data.Vec.Relation.Binary.Pointwise.Inductive +open import Data.Vec.Relation.Binary.Pointwise.Extensional +open import Function +open import Level +open import Relation.Binary.PropositionalEquality hiding (subst₂; setoid) + +l∈⟦e⟧⇒e⤇l : ∀ {e τ} → ∙,∙ ⊢ e ∶ τ → ∀ {l} → l ∈ ⟦ e ⟧ [] → e ⤇ l +l∈⟦e⟧⇒e⤇l Eps (lift refl) = Eps +l∈⟦e⟧⇒e⤇l (Char c) (lift (c∼y ∷ [])) = Char c∼y +l∈⟦e⟧⇒e⤇l {μ e} (Fix ∙,τ⊢e∶τ) (suc n , l∈⟦e⟧ⁿ⁺¹) = Fix (l∈⟦e⟧⇒e⤇l (subst₂ z≤n ∙,τ⊢e∶τ (Fix ∙,τ⊢e∶τ)) l∈⟦e[μe]⟧) + where + open import Relation.Binary.Reasoning.PartialOrder (poset (c ⊔ ℓ)) + ⟦e⟧ⁿ⁺¹≤⟦e[μe]⟧ = begin + ⟦ e ⟧ (((λ X → ⟦ e ⟧ (X ∷ [])) ^ n) (⟦ ⊥ ⟧ []) ∷ []) ≤⟨ mono e ((fⁿ≤⋃f (λ X → ⟦ e ⟧ (X ∷ [])) n) ∷ []) ⟩ + ⟦ e ⟧ (⋃ (λ X → ⟦ e ⟧ (X ∷ [])) ∷ []) ≡⟨⟩ + ⟦ e ⟧ (⟦ μ e ⟧ [] ∷ []) ≈˘⟨ subst-fun e (μ e) F.zero [] ⟩ + ⟦ e [ μ e / F.zero ] ⟧ [] ∎ + l∈⟦e[μe]⟧ = _≤_.f ⟦e⟧ⁿ⁺¹≤⟦e[μe]⟧ l∈⟦e⟧ⁿ⁺¹ +l∈⟦e⟧⇒e⤇l (Cat ∙,∙⊢e₁∶τ₁ ∙,∙⊢e₂∶τ₂ τ₁⊛τ₂) record { l₁∈A = l₁∈⟦e₁⟧ ; l₂∈B = l₂∈⟦e₂⟧ ; eq = eq } = + Cat (l∈⟦e⟧⇒e⤇l ∙,∙⊢e₁∶τ₁ l₁∈⟦e₁⟧) (l∈⟦e⟧⇒e⤇l ∙,∙⊢e₂∶τ₂ l₂∈⟦e₂⟧) eq +l∈⟦e⟧⇒e⤇l (Vee ∙,∙⊢e₁∶τ₁ ∙,∙⊢e₂∶τ₂ τ₁#τ₂) (inj₁ l∈⟦e₁⟧) = Veeˡ (l∈⟦e⟧⇒e⤇l ∙,∙⊢e₁∶τ₁ l∈⟦e₁⟧) +l∈⟦e⟧⇒e⤇l (Vee ∙,∙⊢e₁∶τ₁ ∙,∙⊢e₂∶τ₂ τ₁#τ₂) (inj₂ l∈⟦e₂⟧) = Veeʳ (l∈⟦e⟧⇒e⤇l ∙,∙⊢e₂∶τ₂ l∈⟦e₂⟧) -- cgit v1.2.3