From 8abb1b5601fabf5e7560d08faa6e633e60663e0a Mon Sep 17 00:00:00 2001 From: Chloe Brown Date: Thu, 29 Apr 2021 20:58:04 +0100 Subject: Finally prove that e [ μ e / zero ] ≈ μ e. MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Complete proof of generator. --- src/Cfe/Type/Properties.agda | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) (limited to 'src/Cfe/Type') diff --git a/src/Cfe/Type/Properties.agda b/src/Cfe/Type/Properties.agda index 21051c0..4b38c1e 100644 --- a/src/Cfe/Type/Properties.agda +++ b/src/Cfe/Type/Properties.agda @@ -16,7 +16,6 @@ open Setoid over using () ) open import Algebra -open import Cfe.Function.Power open import Cfe.Language over hiding ( _≉_; ≈-refl; ≈-trans; ≈-isPartialEquivalence; ≈-isEquivalence; partialSetoid; setoid @@ -356,19 +355,20 @@ setoid {fℓ} {lℓ} = record { isEquivalence = ≈-isEquivalence {fℓ} {lℓ} ; l⇒l = λ (x , w , (m , xw∈Fᵐ) , w′ , n , xwcw′∈Fⁿ) → Fⁿ⊨τ.l⇒l (m + n) - (-, -, ∈-resp-⊆ (step (m≤m+n m n)) xw∈Fᵐ , -, ∈-resp-⊆ (step (m≤n+m n m)) xwcw′∈Fⁿ) + ( x + , w + , ∈-resp-⊆ (Iter-monoʳ mono (⊆-min (F ∅)) (m≤m+n m n)) xw∈Fᵐ + , w′ + , ∈-resp-⊆ (Iter-monoʳ mono (⊆-min (F ∅)) (m≤n+m n m)) xwcw′∈Fⁿ + ) } where - Fⁿ⊨τ : ∀ n → (F ^ n) ∅ ⊨ τ + Fⁿ⊨τ : ∀ n → Iter F ∅ n ⊨ τ Fⁿ⊨τ zero = ⊨-min τ Fⁿ⊨τ (suc n) = ⊨-step (Fⁿ⊨τ n) module Fⁿ⊨τ n = _⊨_ (Fⁿ⊨τ n) - step : ∀ {m n} → m ≤ⁿ n → (F ^ m) ∅ ⊆ (F ^ n) ∅ - step {n = n} z≤n = ⊆-min ((F ^ n) ∅) - step (s≤s m≤n) = mono (step m≤n) - ------------------------------------------------------------------------ -- Properties of _⊛_ ------------------------------------------------------------------------ -- cgit v1.2.3