From 4e0ceac75e6d9940f0e11f93a3815448df258c70 Mon Sep 17 00:00:00 2001 From: Chloe Brown Date: Sat, 20 Mar 2021 18:36:24 +0000 Subject: Separate Context into a different module. --- src/Cfe/Context.agda | 10 ++++ src/Cfe/Context/Base.agda | 123 +++++++++++++++++++++++++++++++++++++++ src/Cfe/Context/Properties.agda | 7 +++ src/Cfe/Judgement/Base.agda | 124 ++-------------------------------------- 4 files changed, 145 insertions(+), 119 deletions(-) create mode 100644 src/Cfe/Context.agda create mode 100644 src/Cfe/Context/Base.agda create mode 100644 src/Cfe/Context/Properties.agda (limited to 'src/Cfe') diff --git a/src/Cfe/Context.agda b/src/Cfe/Context.agda new file mode 100644 index 0000000..1c207f5 --- /dev/null +++ b/src/Cfe/Context.agda @@ -0,0 +1,10 @@ +{-# OPTIONS --without-K --safe #-} + +open import Relation.Binary using (Setoid) + +module Cfe.Context + {c ℓ} (over : Setoid c ℓ) + where + +open import Cfe.Context.Base over public +open import Cfe.Context.Properties over public diff --git a/src/Cfe/Context/Base.agda b/src/Cfe/Context/Base.agda new file mode 100644 index 0000000..dcd8056 --- /dev/null +++ b/src/Cfe/Context/Base.agda @@ -0,0 +1,123 @@ +{-# OPTIONS --without-K --safe #-} + +open import Relation.Binary using (Setoid) + +module Cfe.Context.Base + {c ℓ} (over : Setoid c ℓ) + where + +open import Cfe.Type over +open import Data.Empty +open import Data.Fin as F +open import Data.Fin.Properties hiding (≤-trans) +open import Data.Nat as ℕ hiding (_⊔_) +open import Data.Nat.Properties +open import Data.Vec +open import Level renaming (suc to lsuc) +open import Relation.Binary.PropositionalEquality +open import Relation.Nullary + +reduce≥′ : ∀ {m n} → .(m ℕ.≤ n) → (i : Fin n) → .(toℕ i ≥ m) → Fin (n ∸ m) +reduce≥′ {ℕ.zero} {n} m≤n i i≥m = i +reduce≥′ {suc m} {suc n} m≤n (suc i) i≥m = reduce≥′ (pred-mono m≤n) i (pred-mono i≥m) + +private + insert′ : ∀ {a A m n} → Vec {a} A (n ∸ m) → m ℕ.≤ n → m ≢ 0 → (i : Fin (n ∸ ℕ.pred m)) → A → Vec A (n ∸ ℕ.pred m) + insert′ {a} {A} {ℕ.zero} {n} xs m≤n m≢0 i x = ⊥-elim (m≢0 refl) + insert′ {a} {A} {suc ℕ.zero} {suc _} xs _ _ F.zero x = x ∷ xs + insert′ {a} {A} {suc ℕ.zero} {suc (suc n)} (y ∷ xs) _ _ (suc i) x = y ∷ insert′ {m = suc ℕ.zero} {suc n} xs (s≤s z≤n) (λ ()) i x + insert′ {a} {A} {suc (suc m)} {suc ℕ.zero} xs m≤n _ i x = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) m≤n) + insert′ {a} {A} {suc (suc m)} {suc (suc n)} xs m≤n _ i x = insert′ {m = suc m} xs (pred-mono m≤n) (λ ()) i x + + reduce≥′-mono : ∀ {m n} → .(m≤n : m ℕ.≤ n) → (i j : Fin n) → .(i≥m : toℕ i ≥ m) → (i≤j : i F.≤ j) → reduce≥′ m≤n i i≥m F.≤ reduce≥′ m≤n j (≤-trans i≥m i≤j) + reduce≥′-mono {ℕ.zero} {n} m≤n i j i≥m i≤j = i≤j + reduce≥′-mono {suc m} {suc n} m≤n (suc i) (suc j) i≥m i≤j = reduce≥′-mono (pred-mono m≤n) i j (pred-mono i≥m) (pred-mono i≤j) + + remove′ : ∀ {a A m} → Vec {a} A m → .(m ≢ 0) → Fin m → Vec A (ℕ.pred m) + remove′ (x ∷ xs) m≢0 F.zero = xs + remove′ (x ∷ y ∷ xs) m≢0 (suc i) = x ∷ remove′ (y ∷ xs) (λ ()) i + + rotate : ∀ {a A n} → (i j : Fin n) → .(i F.≤ j) → Vec {a} A n → Vec A n + rotate F.zero j i≤j (x ∷ xs) = insert xs j x + rotate (suc i) (suc j) i≤j (x ∷ xs) = x ∷ (rotate i j (pred-mono i≤j) xs) + +record Context n : Set (c ⊔ lsuc ℓ) where + field + m : ℕ + m≤n : m ℕ.≤ n + Γ : Vec (Type ℓ ℓ) (n ∸ m) + Δ : Vec (Type ℓ ℓ) m + +wkn₁ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → .(toℕ i ≥ Context.m Γ,Δ) → Type ℓ ℓ → Context (suc n) +wkn₁ Γ,Δ i i≥m τ = record + { m≤n = ≤-step m≤n + ; Γ = subst (Vec (Type ℓ ℓ)) (sym (+-∸-assoc 1 m≤n)) (insert Γ (F.cast (+-∸-assoc 1 m≤n) (reduce≥′ (≤-step m≤n) i i≥m)) τ) + ; Δ = Δ + } + where + open Context Γ,Δ + +wkn₂ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → toℕ i ℕ.≤ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n) +wkn₂ Γ,Δ i i