From 9e89f36e3fc6210b270d673c30691530015278fb Mon Sep 17 00:00:00 2001 From: Chloe Brown Date: Mon, 22 Mar 2021 16:43:49 +0000 Subject: Prove transfer. --- src/Cfe/Context/Base.agda | 49 +++++++++++--------- src/Cfe/Context/Properties.agda | 57 +++++++++++++++++++++++ src/Cfe/Judgement/Properties.agda | 98 ++++++++++++++++++++++++++++++++++++++- 3 files changed, 179 insertions(+), 25 deletions(-) (limited to 'src/Cfe') diff --git a/src/Cfe/Context/Base.agda b/src/Cfe/Context/Base.agda index 6b7a9dc..1a37aa0 100644 --- a/src/Cfe/Context/Base.agda +++ b/src/Cfe/Context/Base.agda @@ -11,40 +11,43 @@ open import Data.Empty open import Data.Fin as F hiding (cast) open import Data.Fin.Properties hiding (≤-trans) open import Data.Nat as ℕ hiding (_⊔_) -open import Data.Nat.Properties +open import Data.Nat.Properties as NP open import Data.Product open import Data.Vec open import Level renaming (suc to lsuc) open import Relation.Binary.PropositionalEquality open import Relation.Nullary +≤-recomputable : ∀ {m n} → .(m ℕ.≤ n) → m ℕ.≤ n +≤-recomputable {ℕ.zero} {n} m≤n = z≤n +≤-recomputable {suc m} {suc n} m≤n = s≤s (≤-recomputable (pred-mono m≤n)) + cast : ∀ {a A m n} → .(m ≡ n) → Vec {a} A m → Vec {a} A n cast {m = 0} {0} eq [] = [] cast {m = suc _} {suc n} eq (x ∷ xs) = x ∷ cast (cong ℕ.pred eq) xs -reduce≥′ : ∀ {m n} → .(m ℕ.≤ n) → (i : Fin n) → toℕ i ≥ m → Fin (n ∸ m) +reduce≥′ : ∀ {m n} → .(m ℕ.≤ n) → (i : Fin n) → .(_ : toℕ i ≥ m) → Fin (n ∸ m) reduce≥′ {ℕ.zero} {n} m≤n i i≥m = i -reduce≥′ {suc m} {suc n} m≤n (suc i) (s≤s i≥m) = reduce≥′ (pred-mono m≤n) i i≥m - -private - insert′ : ∀ {a A m n} → Vec {a} A (n ∸ m) → m ℕ.≤ n → m ≢ 0 → (i : Fin (n ∸ ℕ.pred m)) → A → Vec A (n ∸ ℕ.pred m) - insert′ {a} {A} {ℕ.zero} {n} xs m≤n m≢0 i x = ⊥-elim (m≢0 refl) - insert′ {a} {A} {suc ℕ.zero} {suc _} xs _ _ F.zero x = x ∷ xs - insert′ {a} {A} {suc ℕ.zero} {suc (suc n)} (y ∷ xs) _ _ (suc i) x = y ∷ insert′ {m = suc ℕ.zero} {suc n} xs (s≤s z≤n) (λ ()) i x - insert′ {a} {A} {suc (suc m)} {suc ℕ.zero} xs m≤n _ i x = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) m≤n) - insert′ {a} {A} {suc (suc m)} {suc (suc n)} xs m≤n _ i x = insert′ {m = suc m} xs (pred-mono m≤n) (λ ()) i x - - reduce≥′-mono : ∀ {m n} → .(m≤n : m ℕ.≤ n) → (i j : Fin n) → (i≥m : toℕ i ≥ m) → (i≤j : i F.≤ j) → reduce≥′ m≤n i i≥m F.≤ reduce≥′ m≤n j (≤-trans i≥m i≤j) - reduce≥′-mono {ℕ.zero} {n} m≤n i j i≥m i≤j = i≤j - reduce≥′-mono {suc m} {suc n} m≤n (suc i) (suc j) (s≤s i≥m) (s≤s i≤j) = reduce≥′-mono (pred-mono m≤n) i j i≥m i≤j - - remove′ : ∀ {a A m} → Vec {a} A m → .(m ≢ 0) → Fin m → Vec A (ℕ.pred m) - remove′ (x ∷ xs) m≢0 F.zero = xs - remove′ (x ∷ y ∷ xs) m≢0 (suc i) = x ∷ remove′ (y ∷ xs) (λ ()) i - - rotate : ∀ {a A n} → (i j : Fin n) → .(i F.≤ j) → Vec {a} A n → Vec A n - rotate F.zero j i≤j (x ∷ xs) = insert xs j x - rotate (suc i) (suc j) i≤j (x ∷ xs) = x ∷ (rotate i j (pred-mono i≤j) xs) +reduce≥′ {suc m} {suc n} m≤n (suc i) i≥m = reduce≥′ (pred-mono m≤n) i (pred-mono i≥m) + +reduce≥′-mono : ∀ {m n} → .(m≤n : m ℕ.≤ n) → (i j : Fin n) → (i≥m : toℕ i ≥ m) → (i≤j : i F.≤ j) → reduce≥′ m≤n i i≥m F.≤ reduce≥′ m≤n j (≤-trans i≥m i≤j) +reduce≥′-mono {ℕ.zero} {n} m≤n i j i≥m i≤j = i≤j +reduce≥′-mono {suc m} {suc n} m≤n (suc i) (suc j) (s≤s i≥m) (s≤s i≤j) = reduce≥′-mono (pred-mono m≤n) i j i≥m i≤j + +insert′ : ∀ {a A m n} → Vec {a} A (n ∸ m) → .(m ℕ.≤ n) → m ≢ 0 → (i : Fin (n ∸ ℕ.pred m)) → A → Vec A (n ∸ ℕ.pred m) +insert′ {a} {A} {ℕ.zero} xs m≤n m≢0 i x = ⊥-elim (m≢0 refl) +insert′ {a} {A} {suc ℕ.zero} xs _ _ F.zero x = x ∷ xs +insert′ {a} {A} {suc ℕ.zero} (y ∷ xs) _ _ (suc i) x = y ∷ insert′ xs (s≤s z≤n) (λ ()) i x +insert′ {a} {A} {suc (suc m)} {suc ℕ.zero} xs m≤n _ i x = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) (≤-recomputable m≤n)) +insert′ {a} {A} {suc (suc m)} {suc (suc _)} xs m≤n _ i x = insert′ {m = suc m} xs (pred-mono m≤n) (λ ()) i x + +rotate : ∀ {a A n} → (i j : Fin n) → .(i F.≤ j) → Vec {a} A n → Vec A n +rotate F.zero j i≤j (x ∷ xs) = insert xs j x +rotate (suc i) (suc j) i≤j (x ∷ xs) = x ∷ (rotate i j (pred-mono i≤j) xs) + +remove′ : ∀ {a A m} → Vec {a} A m → .(m ≢ 0) → Fin m → Vec A (ℕ.pred m) +remove′ (x ∷ xs) m≢0 F.zero = xs +remove′ (x ∷ y ∷ xs) m≢0 (suc i) = x ∷ remove′ (y ∷ xs) (λ ()) i record Context n : Set (c ⊔ lsuc ℓ) where field diff --git a/src/Cfe/Context/Properties.agda b/src/Cfe/Context/Properties.agda index 2761fae..230c18b 100644 --- a/src/Cfe/Context/Properties.agda +++ b/src/Cfe/Context/Properties.agda @@ -8,6 +8,7 @@ module Cfe.Context.Properties open import Cfe.Context.Base over as C open import Cfe.Type over +open import Data.Empty open import Data.Fin as F open import Data.Nat as ℕ open import Data.Nat.Properties @@ -23,6 +24,11 @@ cast-involutive : ∀ {a A k m n} .(k≡m : k ≡ m) .(m≡n : m ≡ n) .(k≡n cast-involutive {k = zero} {zero} {zero} k≡m m≡n k≡n [] = refl cast-involutive {k = suc _} {suc _} {suc _} k≡m m≡n k≡n (x ∷ xs) = cong (x ∷_) (cast-involutive (cong ℕ.pred k≡m) (cong ℕ.pred m≡n) (cong ℕ.pred k≡n) xs) +cast-insert : ∀ {a A m n} xs .(m≡n : _) i j .(_ : toℕ i ≡ toℕ j) y → C.cast {a} {A} {suc m} {suc n} (cong suc m≡n) (insert xs i y) ≡ insert (C.cast m≡n xs) j y +cast-insert [] m≡n zero zero _ y = refl +cast-insert (x ∷ xs) m≡n zero zero _ y = refl +cast-insert {m = suc _} {n = suc _} (x ∷ xs) m≡n (suc i) (suc j) i≡j y = cong (x ∷_) (cast-insert xs (cong ℕ.pred m≡n) i j (cong ℕ.pred i≡j) y) + wkn₁-shift : ∀ {n} (Γ,Δ : Context n) i i≥m τ → shift (wkn₁ Γ,Δ i i≥m τ) ≋ wkn₁ (shift Γ,Δ) i z≤n τ wkn₁-shift record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i i≥m τ = refl , @@ -62,3 +68,54 @@ wkn₂-shift record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i i≤m τ = (trans (sym (+-∸-assoc m (pred-mono m≤n))) (m+n∸m≡n m n)) (xs ++ ys))) eq {m = suc m} {suc n} (x ∷ xs) ys m≤n (suc i) (s≤s i≤m) y = cong (x ∷_) (eq xs ys (pred-mono m≤n) i i≤m y) + +rotate₁-shift : ∀ {n} (Γ,Δ : Context n) i j i≥m i≤j → rotate₁ (shift Γ,Δ) i j z≤n i≤j ≋ shift (rotate₁ Γ,Δ i j i≥m i≤j) +rotate₁-shift record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i j i≥m i≤j = + refl , + eq Γ Δ m≤n i j i≥m i≤j , + refl + where + eq : ∀ {a A m n} xs ys .(m≤n : m ℕ.≤ n) i j i≥m i≤j → + rotate {a} {A} i j i≤j (C.cast (trans (sym (+-∸-assoc m m≤n)) (m+n∸m≡n m n)) (ys ++ xs)) ≡ + C.cast (trans (sym (+-∸-assoc m m≤n)) (m+n∸m≡n m n)) (ys ++ rotate (reduce≥′ m≤n i i≥m) (reduce≥′ m≤n j (≤-trans i≥m i≤j)) (reduce≥′-mono m≤n i j i≥m i≤j) xs) + eq {m = zero} {suc _} (x ∷ xs) [] _ zero j _ _ = sym (cast-insert xs refl j j refl x) + eq {m = zero} (x ∷ xs) [] _ (suc i) (suc j) _ i≤j = cong (x ∷_) (eq xs [] z≤n i j z≤n (pred-mono i≤j)) + eq {m = suc _} {suc _} xs (y ∷ ys) m≤n (suc i) (suc j) (s≤s i≥m) (s≤s i≤j) = cong (y ∷_) (eq xs ys (pred-mono m≤n) i j i≥m i≤j) + +transfer-cons : ∀ {n} (Γ,Δ : Context n) i j i