From b7227fb6ecb7b54313b14bd50381bdb504f13d5c Mon Sep 17 00:00:00 2001 From: Chloe Brown Date: Fri, 5 Mar 2021 15:44:38 +0000 Subject: Prove satisfiability of τε. MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit There is a small error in the paper. It claims that L⊨τε if and only if L≈{ε}. However, from `⊨-anticongˡ` and `≤-min`, we have ∅⊨{ε}. --- src/Cfe/Type/Properties.agda | 23 +++++++++++++++++++++++ 1 file changed, 23 insertions(+) (limited to 'src/Cfe') diff --git a/src/Cfe/Type/Properties.agda b/src/Cfe/Type/Properties.agda index 14e871b..987e41f 100644 --- a/src/Cfe/Type/Properties.agda +++ b/src/Cfe/Type/Properties.agda @@ -45,3 +45,26 @@ L⊨τ⊥⇒L≈∅ {L = L} L⊨τ⊥ = record ; f⇒f = λ () ; l⇒l = λ () } + +L⊨τε⇒L≤{ε} : ∀ {a aℓ} {L : Language a aℓ} → L ⊨ τε → L ≤ {ε} +L⊨τε⇒L≤{ε}{L = L} L⊨τε = record + { f = λ {l} l∈L → elim l l∈L + ; cong = λ {l₁} {l₂} {l₁∈L} {l₂∈L} l₁≈l₂ → tt + } + where + open import Data.Unit + open import Relation.Binary.PropositionalEquality + module L⊨τε = _⊨_ L⊨τε + + elim : ∀ l (l∈L : l ∈ L) → l ∈ {ε} + elim [] []∈L = refl + elim (x ∷ l) xl∈L = ⊥-elim (L⊨τε.f⇒f (-, xl∈L)) + +{ε}⊨τε : {ε} ⊨ τε +{ε}⊨τε = record + { n⇒n = const tt + ; f⇒f = λ () + ; l⇒l = λ { ([] , ()) ; (_ ∷ _ , ())} + } + where + open import Data.Unit -- cgit v1.2.3