{-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Setoid; Rel) module Cfe.Context.Base {c ℓ} (over : Setoid c ℓ) where open import Cfe.Type over open import Data.Empty open import Data.Fin as F hiding (cast) open import Data.Fin.Properties hiding (≤-trans) open import Data.Nat as ℕ hiding (_⊔_) open import Data.Nat.Properties as NP open import Data.Product open import Data.Vec open import Level renaming (suc to lsuc) open import Relation.Binary.PropositionalEquality open import Relation.Nullary drop′ : ∀ {a A n m i} → m ℕ.≤ n → i ℕ.≤ m → Vec {a} A (m ℕ.+ (n ∸ m)) → Vec A (n ∸ i) drop′ z≤n z≤n xs = xs drop′ (s≤s m≤n) z≤n (x ∷ xs) = x ∷ drop′ m≤n z≤n xs drop′ (s≤s m≤n) (s≤s i≤m) (x ∷ xs) = drop′ m≤n i≤m xs take′ : ∀ {a A m i} → i ℕ.≤ m → Vec {a} A m → Vec A i take′ z≤n xs = [] take′ (s≤s i≤m) (x ∷ xs) = x ∷ (take′ i≤m xs) reduce≥′ : ∀ {n m i} → m ℕ.≤ n → toℕ {n} i ≥ m → Fin (n ∸ m) reduce≥′ {i = i} z≤n i≥m = i reduce≥′ {i = suc i} (s≤s m≤n) (s≤s i≥m) = reduce≥′ m≤n i≥m reduce≥′-mono : ∀ {n m i j} → (m≤n : m ℕ.≤ n) → (i≥m : toℕ i ≥ m) → (i≤j : i F.≤ j) → reduce≥′ m≤n i≥m F.≤ reduce≥′ m≤n (≤-trans i≥m i≤j) reduce≥′-mono z≤n i≥m i≤j = i≤j reduce≥′-mono {i = suc i} {suc j} (s≤s m≤n) (s≤s i≥m) (s≤s i≤j) = reduce≥′-mono m≤n i≥m i≤j insert′ : ∀ {a A n m} → Vec {a} A (n ∸ suc m) → suc m ℕ.≤ n → Fin (n ∸ m) → A → Vec A (n ∸ m) insert′ xs (s≤s z≤n) i x = insert xs i x insert′ xs (s≤s (s≤s m≤n)) i x = insert′ xs (s≤s m≤n) i x rotate : ∀ {a A n} {i j : Fin n} → Vec {a} A n → i F.≤ j → Vec A n rotate {i = F.zero} {j} (x ∷ xs) z≤n = insert xs j x rotate {i = suc i} {suc j} (x ∷ xs) (s≤s i≤j) = x ∷ (rotate xs i≤j) remove′ : ∀ {a A n} → Vec {a} A n → Fin n → Vec A (ℕ.pred n) remove′ (x ∷ xs) F.zero = xs remove′ (x ∷ y ∷ xs) (suc i) = x ∷ remove′ (y ∷ xs) i record Context n : Set (c ⊔ lsuc ℓ) where field m : ℕ m≤n : m ℕ.≤ n Γ : Vec (Type ℓ ℓ) (n ∸ m) Δ : Vec (Type ℓ ℓ) m ∙,∙ : Context 0 ∙,∙ = record { m≤n = z≤n ; Γ = [] ; Δ = [] } toVec : ∀ {n} → Context n → Vec (Type ℓ ℓ) n toVec record { m = .0 ; m≤n = _ ; Γ = Γ ; Δ = [] } = Γ toVec {suc n} record { m = .(suc _) ; m≤n = (s≤s m≤n) ; Γ = Γ ; Δ = (x ∷ Δ) } = x ∷ toVec (record { m≤n = m≤n ; Γ = Γ ; Δ = Δ }) wkn₁ : ∀ {n i} → (Γ,Δ : Context n) → toℕ {suc n} i ≥ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n) wkn₁ Γ,Δ i≥m τ = record { m≤n = ≤-step m≤n ; Γ = insert′ Γ (s≤s m≤n) (reduce≥′ (≤-step m≤n) i≥m) τ ; Δ = Δ } where open Context Γ,Δ wkn₂ : ∀ {n i} → (Γ,Δ : Context n) → toℕ {suc n} i ℕ.≤ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n) wkn₂ Γ,Δ i≤m τ = record { m≤n = s≤s m≤n ; Γ = Γ ; Δ = insert Δ (fromℕ< (s≤s i≤m)) τ } where open Context Γ,Δ shift≤ : ∀ {n i} (Γ,Δ : Context n) → i ℕ.≤ Context.m Γ,Δ → Context n shift≤ {n} {i} record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i≤m = record { m≤n = ≤-trans i≤m m≤n ; Γ = drop′ m≤n i≤m (Δ ++ Γ) ; Δ = take′ i≤m Δ } cons : ∀ {n} → Context n → Type ℓ ℓ → Context (suc n) cons Γ,Δ τ = wkn₂ Γ,Δ z≤n τ shift : ∀ {n} → Context n → Context n shift Γ,Δ = shift≤ Γ,Δ z≤n _≋_ : ∀ {n} → Rel (Context n) (c ⊔ lsuc ℓ) Γ,Δ ≋ Γ,Δ′ = Σ (Context.m Γ,Δ ≡ Context.m Γ,Δ′) λ {refl → Context.Γ Γ,Δ ≡ Context.Γ Γ,Δ′ × Context.Δ Γ,Δ ≡ Context.Δ Γ,Δ′}