{-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Setoid; Rel) module Cfe.Context.Base {c ℓ} (over : Setoid c ℓ) where open import Cfe.Type over open import Data.Empty open import Data.Fin as F hiding (cast) open import Data.Fin.Properties hiding (≤-trans) open import Data.Nat as ℕ hiding (_⊔_) open import Data.Nat.Properties as NP open import Data.Product open import Data.Vec open import Level renaming (suc to lsuc) open import Relation.Binary.PropositionalEquality open import Relation.Nullary ≤-recomputable : ∀ {m n} → .(m ℕ.≤ n) → m ℕ.≤ n ≤-recomputable {ℕ.zero} {n} m≤n = z≤n ≤-recomputable {suc m} {suc n} m≤n = s≤s (≤-recomputable (pred-mono m≤n)) cast : ∀ {a A m n} → .(m ≡ n) → Vec {a} A m → Vec {a} A n cast {m = 0} {0} eq [] = [] cast {m = suc _} {suc n} eq (x ∷ xs) = x ∷ cast (cong ℕ.pred eq) xs reduce≥′ : ∀ {m n} → .(m ℕ.≤ n) → (i : Fin n) → .(_ : toℕ i ≥ m) → Fin (n ∸ m) reduce≥′ {ℕ.zero} {n} m≤n i i≥m = i reduce≥′ {suc m} {suc n} m≤n (suc i) i≥m = reduce≥′ (pred-mono m≤n) i (pred-mono i≥m) reduce≥′-mono : ∀ {m n} → .(m≤n : m ℕ.≤ n) → (i j : Fin n) → (i≥m : toℕ i ≥ m) → (i≤j : i F.≤ j) → reduce≥′ m≤n i i≥m F.≤ reduce≥′ m≤n j (≤-trans i≥m i≤j) reduce≥′-mono {ℕ.zero} {n} m≤n i j i≥m i≤j = i≤j reduce≥′-mono {suc m} {suc n} m≤n (suc i) (suc j) (s≤s i≥m) (s≤s i≤j) = reduce≥′-mono (pred-mono m≤n) i j i≥m i≤j insert′ : ∀ {a A m n} → Vec {a} A (n ∸ m) → .(m ℕ.≤ n) → m ≢ 0 → (i : Fin (n ∸ ℕ.pred m)) → A → Vec A (n ∸ ℕ.pred m) insert′ {a} {A} {ℕ.zero} xs m≤n m≢0 i x = ⊥-elim (m≢0 refl) insert′ {a} {A} {suc ℕ.zero} xs _ _ F.zero x = x ∷ xs insert′ {a} {A} {suc ℕ.zero} (y ∷ xs) _ _ (suc i) x = y ∷ insert′ xs (s≤s z≤n) (λ ()) i x insert′ {a} {A} {suc (suc m)} {suc ℕ.zero} xs m≤n _ i x = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) (≤-recomputable m≤n)) insert′ {a} {A} {suc (suc m)} {suc (suc _)} xs m≤n _ i x = insert′ {m = suc m} xs (pred-mono m≤n) (λ ()) i x rotate : ∀ {a A n} → (i j : Fin n) → .(i F.≤ j) → Vec {a} A n → Vec A n rotate F.zero j i≤j (x ∷ xs) = insert xs j x rotate (suc i) (suc j) i≤j (x ∷ xs) = x ∷ (rotate i j (pred-mono i≤j) xs) remove′ : ∀ {a A m} → Vec {a} A m → .(m ≢ 0) → Fin m → Vec A (ℕ.pred m) remove′ (x ∷ xs) m≢0 F.zero = xs remove′ (x ∷ y ∷ xs) m≢0 (suc i) = x ∷ remove′ (y ∷ xs) (λ ()) i record Context n : Set (c ⊔ lsuc ℓ) where field m : ℕ m≤n : m ℕ.≤ n Γ : Vec (Type ℓ ℓ) (n ∸ m) Δ : Vec (Type ℓ ℓ) m wkn₁ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → (toℕ i ≥ Context.m Γ,Δ) → Type ℓ ℓ → Context (suc n) wkn₁ Γ,Δ i i≥m τ = record { m≤n = ≤-step m≤n ; Γ = cast (sym (+-∸-assoc 1 m≤n)) (insert Γ (F.cast (+-∸-assoc 1 m≤n) (reduce≥′ (≤-step m≤n) i i≥m)) τ) ; Δ = Δ } where open Context Γ,Δ wkn₂ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → toℕ i ℕ.≤ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n) wkn₂ Γ,Δ i i≤m τ = record { m≤n = s≤s m≤n ; Γ = Γ ; Δ = insert Δ (fromℕ< (s≤s i≤m)) τ } where open Context Γ,Δ rotate₁ : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → toℕ i ≥ Context.m Γ,Δ → (i F.≤ j) → Context n rotate₁ {n} Γ,Δ i j i≥m i≤j = record { m≤n = m≤n ; Γ = rotate (reduce≥′ m≤n i i≥m) (reduce≥′ m≤n j (≤-trans i≥m i≤j)) (reduce≥′-mono m≤n i j i≥m i≤j) Γ ; Δ = Δ } where open Context Γ,Δ rotate₂ : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → (toℕ j ℕ.< Context.m Γ,Δ) → (i F.≤ j) → Context n rotate₂ {n} Γ,Δ i j j