{-# OPTIONS --without-K --safe #-} open import Relation.Binary using (REL; Setoid) module Cfe.Derivation.Base {c ℓ} (over : Setoid c ℓ) where open Setoid over renaming (Carrier to C; _≈_ to _∼_) open import Cfe.Expression over hiding (_≋_) open import Data.Fin open import Data.List open import Data.List.Relation.Binary.Equality.Setoid over open import Level using (_⊔_) infix 5 _⤇_ infix 4 _≈_ data _⤇_ : Expression 0 → List C → Set (c ⊔ ℓ) where Eps : ε ⤇ [] Char : ∀ {c y} → (c∼y : c ∼ y) → Char c ⤇ [ y ] Cat : ∀ {e₁ e₂ l₁ l₂ l} → e₁ ⤇ l₁ → e₂ ⤇ l₂ → l₁ ++ l₂ ≋ l → e₁ ∙ e₂ ⤇ l Veeˡ : ∀ {e₁ e₂ l} → e₁ ⤇ l → e₁ ∨ e₂ ⤇ l Veeʳ : ∀ {e₁ e₂ l} → e₂ ⤇ l → e₁ ∨ e₂ ⤇ l Fix : ∀ {e l} → e [ μ e / zero ] ⤇ l → μ e ⤇ l data _≈_ : ∀ {e l l′} → REL (e ⤇ l) (e ⤇ l′) (c ⊔ ℓ) where Eps : Eps ≈ Eps Char : ∀ {c y y′} → (c∼y : c ∼ y) → (c∼y′ : c ∼ y′) → Char c∼y ≈ Char c∼y′ Cat : ∀ {e₁ e₂ l l₁ l₂ l₁′ l₂′ e₁⤇l₁ e₁⤇l₁′ e₂⤇l₂ e₂⤇l₂′} → (e₁⤇l₁≈e₁⤇l′ : _≈_ {e₁} {l₁} {l₁′} e₁⤇l₁ e₁⤇l₁′) → (e₂⤇l₂≈e₂⤇l′ : _≈_ {e₂} {l₂} {l₂′} e₂⤇l₂ e₂⤇l₂′) → (eq : l₁ ++ l₂ ≋ l) → (eq′ : l₁′ ++ l₂′ ≋ l) → Cat e₁⤇l₁ e₂⤇l₂ eq ≈ Cat e₁⤇l₁′ e₂⤇l₂′ eq′ Veeˡ : ∀ {e₁ e₂ l l′ e₁⤇l e₁⤇l′} → (e₁⤇l≈e₁⤇l′ : _≈_ {e₁} {l} {l′} e₁⤇l e₁⤇l′) → Veeˡ {e₂ = e₂} e₁⤇l ≈ Veeˡ e₁⤇l′ Veeʳ : ∀ {e₁ e₂ l l′ e₂⤇l e₂⤇l′} → (e₂⤇l≈e₂⤇l′ : _≈_ {e₂} {l} {l′} e₂⤇l e₂⤇l′) → Veeʳ {e₁} e₂⤇l ≈ Veeʳ e₂⤇l′ Fix : ∀ {e l l′ e[μe/0]⤇l e[μe/0]⤇l′} → (e[μe/0]⤇l≈e[μe/0]⤇l′ : _≈_ {e [ μ e / zero ]} {l} {l′} e[μe/0]⤇l e[μe/0]⤇l′) → Fix {e} e[μe/0]⤇l ≈ Fix e[μe/0]⤇l′