{-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Setoid) module Cfe.Derivation.Properties {c ℓ} (over : Setoid c ℓ) where open Setoid over renaming (Carrier to C; _≈_ to _∼_) open import Cfe.Context over hiding (_≋_) open import Cfe.Expression over hiding (_≋_) open import Cfe.Language over hiding (≤-refl; _≈_; _<_) open import Cfe.Language.Construct.Concatenate over using (Concat) open import Cfe.Language.Indexed.Construct.Iterate over open import Cfe.Judgement over open import Cfe.Derivation.Base over open import Cfe.Type over using (_⊛_; _⊨_) open import Data.Bool using (T; not; true; false) open import Data.Empty using (⊥-elim) open import Data.Fin as F hiding (_<_) open import Data.List hiding (null) open import Data.List.Relation.Binary.Equality.Setoid over open import Data.Nat as ℕ hiding (_⊔_; _^_; _<_) open import Data.Nat.Properties using (≤-step; m≤m+n; m≤n+m; ≤-refl; n<1+n; module ≤-Reasoning) open import Data.Nat.Induction using () renaming (<-wellFounded to <ⁿ-wellFounded) open import Data.Product as Product open import Data.Product.Relation.Binary.Lex.Strict open import Data.Sum as Sum open import Data.Vec hiding (length; _++_) open import Data.Vec.Relation.Binary.Pointwise.Inductive open import Data.Vec.Relation.Binary.Pointwise.Extensional open import Function open import Induction.WellFounded open import Level open import Relation.Binary import Relation.Binary.Construct.On as On open import Relation.Binary.PropositionalEquality as ≡ hiding (subst₂; setoid) private infix 4 _<_ _<_ : Rel (List C × Expression 0) _ _<_ = ×-Lex _≡_ ℕ._<_ _<ᵣₐₙₖ_ on (Product.map₁ length) <-wellFounded : WellFounded _<_ <-wellFounded = On.wellFounded (Product.map₁ length) (×-wellFounded <ⁿ-wellFounded <ᵣₐₙₖ-wellFounded) l∈⟦e⟧⇒e⤇l : ∀ {e τ} → ∙,∙ ⊢ e ∶ τ → ∀ {l} → l ∈ ⟦ e ⟧ [] → e ⤇ l l∈⟦e⟧⇒e⤇l {e} {τ} ∙,∙⊢e∶τ {l} l∈⟦e⟧ = All.wfRec <-wellFounded _ Pred go (l , e) ∙,∙⊢e∶τ l∈⟦e⟧ where Pred : List C × Expression 0 → Set _ Pred (l , e) = ∀ {τ} → ∙,∙ ⊢ e ∶ τ → l ∈ ⟦ e ⟧ [] → e ⤇ l e[μe/0]<μe : ∀ {e τ} l → ∙,∙ ⊢ μ e ∶ τ → (l , e [ μ e / F.zero ]) < (l , μ e) e[μe/0]<μe {e} l (Fix ∙,τ⊢e∶τ)= inj₂ (≡.refl , (begin-strict rank (e [ μ e / F.zero ]) ≡⟨ subst-preserves-rank z≤n ∙,τ⊢e∶τ (Fix ∙,τ⊢e∶τ) ⟩ rank e <⟨ n<1+n (rank e) ⟩ ℕ.suc (rank e) ≡⟨⟩ rank (μ e) ∎)) where open ≤-Reasoning l₁++l₂≋l⇒∣l₁∣≤∣l∣ : ∀ {l₂ l} l₁ → l₁ ++ l₂ ≋ l → (length l₁ ℕ.< length l) ⊎ (length l₁ ≡ length l) l₁++l₂≋l⇒∣l₁∣≤∣l∣ [] [] = inj₂ ≡.refl l₁++l₂≋l⇒∣l₁∣≤∣l∣ [] (_ ∷ _) = inj₁ (s≤s z≤n) l₁++l₂≋l⇒∣l₁∣≤∣l∣ (_ ∷ l₁) (_ ∷ eq) = Sum.map s≤s (cong ℕ.suc) (l₁++l₂≋l⇒∣l₁∣≤∣l∣ l₁ eq) l₁++l₂≋l⇒∣l₂∣≤∣l∣ : ∀ {l₂ l} l₁ → l₁ ++ l₂ ≋ l → (length l₂ ℕ.< length l) ⊎ (length l₁ ≡ 0) l₁++l₂≋l⇒∣l₂∣≤∣l∣ [] _ = inj₂ ≡.refl l₁++l₂≋l⇒∣l₂∣≤∣l∣ (_ ∷ []) (_ ∷ []) = inj₁ (s≤s z≤n) l₁++l₂≋l⇒∣l₂∣≤∣l∣ (x ∷ []) (x∼y ∷ _ ∷ eq) = inj₁ ([ s≤s , (λ ()) ]′ (l₁++l₂≋l⇒∣l₂∣≤∣l∣ (x ∷ []) (x∼y ∷ eq))) l₁++l₂≋l⇒∣l₂∣≤∣l∣ (_ ∷ x ∷ l₁) (_ ∷ eq) = inj₁ ([ ≤-step , (λ ()) ]′ (l₁++l₂≋l⇒∣l₂∣≤∣l∣ (x ∷ l₁) eq)) e₁