{-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Setoid) module Cfe.Judgement.Base {c ℓ} (over : Setoid c ℓ) where open import Cfe.Expression over open import Cfe.Type over renaming (_∙_ to _∙ₜ_; _∨_ to _∨ₜ_) open import Cfe.Type.Construct.Lift over open import Data.Fin open import Data.Nat as ℕ hiding (_⊔_) open import Data.Vec hiding (_⊛_) open import Level hiding (Lift) renaming (suc to lsuc) infix 2 _,_⊢_∶_ data _,_⊢_∶_ {m} {n} : Vec (Type ℓ ℓ) m → Vec (Type ℓ ℓ) n → Expression (n ℕ.+ m) → Type ℓ ℓ → Set (c ⊔ lsuc ℓ) where Eps : ∀ {Γ Δ} → Γ , Δ ⊢ ε ∶ Lift ℓ ℓ τε Char : ∀ {Γ Δ} c → Γ , Δ ⊢ Char c ∶ Lift ℓ ℓ τ[ c ] Bot : ∀ {Γ Δ} → Γ , Δ ⊢ ⊥ ∶ Lift ℓ ℓ τ⊥ Var : ∀ {Γ Δ i} i≥n → Γ , Δ ⊢ Var i ∶ lookup Γ (reduce≥ i i≥n) Fix : ∀ {Γ Δ e τ} → Γ , τ ∷ Δ ⊢ e ∶ τ → Γ , Δ ⊢ μ e ∶ τ Cat : ∀ {Γ Δ e e′ τ τ′} → Γ , Δ ⊢ e ∶ τ → Δ ++ Γ , [] ⊢ e′ ∶ τ′ → τ ⊛ τ′ → Γ , Δ ⊢ e ∙ e′ ∶ τ ∙ₜ τ′ Vee : ∀ {Γ Δ e e′ τ τ′} → Γ , Δ ⊢ e ∶ τ → Γ , Δ ⊢ e′ ∶ τ′ → τ # τ′ → Γ , Δ ⊢ e ∨ e′ ∶ τ ∨ₜ τ′