{-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Setoid) module Cfe.Judgement.Properties {c ℓ} (over : Setoid c ℓ) where open import Cfe.Context over renaming ( wkn₁ to cwkn₁ ; wkn₂ to cwkn₂ ; rotate to crotate ; rotate₁ to crotate₁ ; transfer to ctransfer ; _≋_ to _≋ᶜ_ ) open import Cfe.Expression over open import Cfe.Judgement.Base over open import Data.Empty open import Data.Fin as F open import Data.Fin.Properties hiding (≤-refl; ≤-trans; ≤-irrelevant) open import Data.Nat as ℕ open import Data.Nat.Properties open import Data.Product open import Data.Vec open import Data.Vec.Properties open import Function open import Relation.Binary.PropositionalEquality open import Relation.Nullary toℕ-punchIn : ∀ {n} i j → toℕ j ℕ.≤ toℕ (punchIn {n} i j) toℕ-punchIn zero j = n≤1+n (toℕ j) toℕ-punchIn (suc i) zero = ≤-refl toℕ-punchIn (suc i) (suc j) = s≤s (toℕ-punchIn i j) congᶜ : ∀ {n} {Γ,Δ Γ,Δ′ : Context n} {e τ} → Γ,Δ ≋ᶜ Γ,Δ′ → Γ,Δ ⊢ e ∶ τ → Γ,Δ′ ⊢ e ∶ τ congᶜ {Γ,Δ = Γ,Δ} {Γ,Δ′} (refl , refl , refl) Γ,Δ⊢e∶τ with ≤-irrelevant (Context.m≤n Γ,Δ) (Context.m≤n Γ,Δ′) ... | refl = Γ,Δ⊢e∶τ congᵗ : ∀ {n} {Γ,Δ : Context n} {e τ τ′} → τ ≡ τ′ → Γ,Δ ⊢ e ∶ τ → Γ,Δ ⊢ e ∶ τ′ congᵗ refl Γ,Δ⊢e∶τ = Γ,Δ⊢e∶τ wkn₁ : ∀ {n} {Γ,Δ : Context n} {e τ} → Γ,Δ ⊢ e ∶ τ → ∀ i τ′ i≥m → cwkn₁ Γ,Δ i i≥m τ′ ⊢ wkn e i ∶ τ wkn₁ Eps i τ′ i≥m = Eps wkn₁ (Char c) i τ′ i≥m = Char c wkn₁ Bot i τ′ i≥m = Bot wkn₁ {Γ,Δ = Γ,Δ} (Var {i = j} j≥m) i τ′ i≥m = congᵗ (τ≡τ′ Γ,Δ i j i≥m j≥m τ′) (Var (≤-trans j≥m (toℕ-punchIn i j))) where open Context Γ,Δ τ≡τ′ : ∀ {n} (Γ,Δ : Context n) i j i≥m j≥m τ → lookup (Context.Γ (cwkn₁ Γ,Δ i i≥m τ)) (reduce≥′ (≤-step (Context.m≤n Γ,Δ)) (punchIn i j) (≤-trans j≥m (toℕ-punchIn i j))) ≡ lookup (Context.Γ Γ,Δ) (reduce≥′ (Context.m≤n Γ,Δ) j j≥m) τ≡τ′ {suc _} record { m = zero ; m≤n = _ ; Γ = (_ ∷ _) ; Δ = _ } zero zero _ _ _ = refl τ≡τ′ {suc n} record { m = zero ; m≤n = _ ; Γ = (_ ∷ Γ) ; Δ = Δ } zero (suc j) _ _ τ = τ≡τ′ (record { m≤n = z≤n ; Γ = Γ ; Δ = Δ }) zero j z≤n z≤n τ τ≡τ′ {suc n} record { m = zero ; m≤n = _ ; Γ = (_ ∷ _) ; Δ = _ } (suc _) zero _ _ τ = refl τ≡τ′ {suc n} record { m = zero ; m≤n = _ ; Γ = (_ ∷ Γ) ; Δ = Δ } (suc i) (suc j) _ _ τ = τ≡τ′ (record { m≤n = z≤n ; Γ = Γ ; Δ = Δ}) i j z≤n z≤n τ τ≡τ′ {suc n} record { m = (suc m) ; m≤n = (s≤s m≤n) ; Γ = Γ ; Δ = (_ ∷ Δ) } (suc i) (suc j) (s≤s i≥m) (s≤s j≥m) τ = τ≡τ′ (record { m≤n = m≤n ; Γ = Γ ; Δ = Δ}) i j i≥m j≥m τ wkn₁ (Fix Γ,Δ⊢e∶τ) i τ′ i≥m = Fix (wkn₁ Γ,Δ⊢e∶τ (suc i) τ′ (s≤s i≥m)) wkn₁ {Γ,Δ = Γ,Δ} (Cat Γ,Δ⊢e₁∶τ₁ Δ++Γ,∙⊢e₂∶τ₂ τ₁⊛τ₂) i τ′ i≥m = Cat (wkn₁ Γ,Δ⊢e₁∶τ₁ i τ′ i≥m) (congᶜ (≋-sym (wkn₁-shift Γ,Δ i i≥m τ′)) (wkn₁ Δ++Γ,∙⊢e₂∶τ₂ i τ′ z≤n)) τ₁⊛τ₂ wkn₁ (Vee Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e₂∶τ₂ τ₁#τ₂) i τ′ i≥m = Vee (wkn₁ Γ,Δ⊢e₁∶τ₁ i τ′ i≥m) (wkn₁ Γ,Δ⊢e₂∶τ₂ i τ′ i≥m) τ₁#τ₂ wkn₂ : ∀ {n} {Γ,Δ : Context n} {e τ} → Γ,Δ ⊢ e ∶ τ → ∀ i τ′ i≤m → cwkn₂ Γ,Δ i i≤m τ′ ⊢ wkn e i ∶ τ wkn₂ Eps i τ′ i≤m = Eps wkn₂ (Char c) i τ′ i≤m = Char c wkn₂ Bot i τ′ i≤m = Bot wkn₂ {Γ,Δ = Γ,Δ} (Var {i = j} j≥m) i τ′ i≤m = congᵗ (τ≡τ′ (Context.Γ Γ,Δ) (Context.m≤n Γ,Δ) i j i≤m j≥m) (Var (punchIn[i,j]≥m i j i≤m j≥m)) where punchIn[i,j]≥m : ∀ {m n} i j → toℕ i ℕ.≤ m → toℕ j ≥ m → toℕ (punchIn {n} i j) ≥ suc m punchIn[i,j]≥m {m} zero j i≤m j≥m = s≤s j≥m punchIn[i,j]≥m {suc m} (suc i) (suc j) (s≤s i≤m) (s≤s j≥m) = s≤s (punchIn[i,j]≥m i j i≤m j≥m) τ≡τ′ : ∀ {a A m n} xs m≤n i j i≤m j≥m → lookup {a} {A} xs (reduce≥′ {suc m} (s≤s m≤n) (punchIn {n} i j) (punchIn[i,j]≥m i j i≤m j≥m)) ≡ lookup xs (reduce≥′ m≤n j j≥m) τ≡τ′ {m = zero} xs m≤n zero j i≤m j≥m = refl τ≡τ′ {m = suc _} xs m≤n zero (suc j) i≤m (s≤s j≥m) = τ≡τ′ xs (pred-mono m≤n) zero j z≤n j≥m τ≡τ′ {m = suc _} xs m≤n (suc i) (suc j) (s≤s i≤m) (s≤s j≥m) = τ≡τ′ xs (pred-mono m≤n) i j i≤m j≥m wkn₂ (Fix Γ,Δ⊢e∶τ) i τ′ i≤m = Fix (wkn₂ Γ,Δ⊢e∶τ (suc i) τ′ (s≤s i≤m)) wkn₂ {Γ,Δ = Γ,Δ} (Cat Γ,Δ⊢e₁∶τ₁ Δ++Γ,∙⊢e₂∶τ₂ τ₁⊛τ₂) i τ′ i≤m = Cat (wkn₂ Γ,Δ⊢e₁∶τ₁ i τ′ i≤m) (congᶜ (≋-sym (wkn₂-shift Γ,Δ i i≤m τ′)) (wkn₁ Δ++Γ,∙⊢e₂∶τ₂ i τ′ z≤n)) τ₁⊛τ₂ wkn₂ (Vee Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e₂∶τ₂ τ₁#τ₂) i τ′ i≤m = Vee (wkn₂ Γ,Δ⊢e₁∶τ₁ i τ′ i≤m) (wkn₂ Γ,Δ⊢e₂∶τ₂ i τ′ i≤m) τ₁#τ₂ rotate₁ : ∀ {n} {Γ,Δ : Context n} {e τ} → Γ,Δ ⊢ e ∶ τ → ∀ i j i≥m i≤j → crotate₁ Γ,Δ i j i≥m i≤j ⊢ rotate e i j i≤j ∶ τ rotate₁ Eps i j i≥m i≤j = Eps rotate₁ (Char c) i j i≥m i≤j = Char c rotate₁ Bot i j i≥m i≤j = Bot rotate₁ {suc n} {Γ,Δ = record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ }} (Var {i = k} k≥m) i j i≥m i≤j with i F.≟ k ... | yes refl = congᵗ (τ≡τ′ Γ m≤n i j i≥m i≤j) (Var (≤-trans i≥m i≤j)) where τ≡τ′ : ∀ {a A m n} xs m≤n i j i≥m i≤j → lookup {a} {A} (crotate (reduce≥′ {m} {n} m≤n i i≥m) (reduce≥′ m≤n j (≤-trans i≥m i≤j)) (reduce≥′-mono m≤n i j i≥m i≤j) xs) (reduce≥′ m≤n j (≤-trans i≥m i≤j)) ≡ lookup xs (reduce≥′ m≤n i i≥m) τ≡τ′ {m = zero} (x ∷ xs) m≤n zero j i≥m i≤j = insert-lookup xs j x τ≡τ′ {m = zero} (x ∷ xs) m≤n (suc i) (suc j) i≥m i≤j = τ≡τ′ xs z≤n i j z≤n (pred-mono i≤j) τ≡τ′ {m = suc m} {suc n} xs m≤n (suc i) (suc j) (s≤s i≥m) (s≤s i≤j) = τ≡τ′ xs (pred-mono m≤n) i j i≥m i≤j ... | no i≢k = congᵗ (τ≡τ′ Γ m≤n i j k i≢k i≥m i≤j k≥m) (Var (punchIn-punchOut≥m i j k i≢k i≥m i≤j k≥m)) where punchIn-punchOut≥m : ∀ {m n} (i j k : Fin (suc n)) (i≢k : i ≢ k) → toℕ i ≥ m → i F.≤ j → toℕ k ≥ m → toℕ (punchIn j (punchOut i≢k)) ≥ m punchIn-punchOut≥m {zero} _ _ _ _ _ _ _ = z≤n punchIn-punchOut≥m {suc _} zero _ zero i≢k _ _ _ = ⊥-elim (i≢k refl) punchIn-punchOut≥m {suc _} zero zero (suc _) _ _ _ k≥m = k≥m punchIn-punchOut≥m {suc _} {suc _} (suc i) (suc j) (suc k) i≢k (s≤s i≥m) (s≤s i≤j) (s≤s k≥m) = s≤s (punchIn-punchOut≥m i j k (i≢k ∘ cong suc) i≥m i≤j k≥m) τ≡τ′ : ∀ {a A m n} xs m≤n i j k i≢k i≥m i≤j k≥m → lookup {a} {A} (crotate (reduce≥′ {m} {suc n} m≤n i i≥m) (reduce≥′ m≤n j (≤-trans i≥m i≤j)) (reduce≥′-mono m≤n i j i≥m i≤j) xs) (reduce≥′ m≤n (punchIn j (punchOut i≢k)) (punchIn-punchOut≥m i j k i≢k i≥m i≤j k≥m)) ≡ lookup xs (reduce≥′ m≤n k k≥m) τ≡τ′ {m = zero} _ _ zero _ zero i≢k _ _ _ = ⊥-elim (i≢k refl) τ≡τ′ {m = zero} (_ ∷ _) _ zero zero (suc _) _ _ _ _ = refl τ≡τ′ {m = zero} (_ ∷ _ ∷ _) _ zero (suc _) (suc zero) _ _ _ _ = refl τ≡τ′ {m = zero} (x ∷ _ ∷ xs) _ zero (suc j) (suc (suc k)) _ _ _ _ = τ≡τ′ (x ∷ xs) z≤n zero j (suc k) (λ ()) z≤n z≤n z≤n τ≡τ′ {m = zero} (_ ∷ _ ∷ _) _ (suc _) (suc _) zero _ _ _ _ = refl τ≡τ′ {m = zero} (_ ∷ x ∷ xs) _ (suc i) (suc j) (suc k) i≢k _ i≤j _ = τ≡τ′ (x ∷ xs) z≤n i j k (i≢k ∘ cong suc) z≤n (pred-mono i≤j) z≤n τ≡τ′ {m = suc m} {suc _} xs m≤n (suc i) (suc j) (suc k) i≢k i≥m i≤j k≥m = τ≡τ′ xs (pred-mono m≤n) i j k (i≢k ∘ cong suc) (pred-mono i≥m) (pred-mono i≤j) (pred-mono k≥m) rotate₁ (Fix Γ,Δ⊢e∶τ) i j i≥m i≤j = Fix (rotate₁ Γ,Δ⊢e∶τ (suc i) (suc j) (s≤s i≥m) (s≤s i≤j)) rotate₁ {Γ,Δ = Γ,Δ} (Cat Γ,Δ⊢e₁∶τ₁ Δ++Γ,∙⊢e₂∶τ₂ τ₁⊛τ₂) i j i≥m i≤j = Cat (rotate₁ Γ,Δ⊢e₁∶τ₁ i j i≥m i≤j) (congᶜ (rotate₁-shift Γ,Δ i j i≥m i≤j) (rotate₁ Δ++Γ,∙⊢e₂∶τ₂ i j z≤n i≤j)) τ₁⊛τ₂ rotate₁ (Vee Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e₂∶τ₂ τ₁#τ₂) i j i≥m i≤j = Vee (rotate₁ Γ,Δ⊢e₁∶τ₁ i j i≥m i≤j) (rotate₁ Γ,Δ⊢e₂∶τ₂ i j i≥m i≤j) τ₁#τ₂ transfer : ∀ {n} {Γ,Δ : Context n} {e τ} → Γ,Δ ⊢ e ∶ τ → ∀ i j i