{-# OPTIONS --without-K --safe #-} open import Relation.Binary module Cfe.Language.Construct.Concatenate {c ℓ} (over : Setoid c ℓ) where open import Algebra open import Cfe.Language over as 𝕃 open import Data.Empty open import Data.List hiding (null) open import Data.List.Relation.Binary.Equality.Setoid over open import Data.List.Properties open import Data.Product as Product open import Data.Unit using (⊤) open import Function open import Level import Relation.Binary.PropositionalEquality as ≡ open import Relation.Nullary open import Relation.Unary hiding (_∈_) import Relation.Binary.Indexed.Heterogeneous as I open Setoid over using () renaming (Carrier to C; _≈_ to _∼_; refl to ∼-refl; sym to ∼-sym; trans to ∼-trans) module Compare where data Compare : List C → List C → List C → List C → Set (c ⊔ ℓ) where back : ∀ {xs zs} → (xs≋zs : xs ≋ zs) → Compare [] xs [] zs left : ∀ {w ws xs z zs} → Compare ws xs [] zs → (w∼z : w ∼ z) → Compare (w ∷ ws) xs [] (z ∷ zs) right : ∀ {x xs y ys zs} → Compare [] xs ys zs → (x∼y : x ∼ y) → Compare [] (x ∷ xs) (y ∷ ys) zs front : ∀ {w ws xs y ys zs} → Compare ws xs ys zs → (w∼y : w ∼ y) → Compare (w ∷ ws) xs (y ∷ ys) zs isLeft : ∀ {ws xs ys zs} → Compare ws xs ys zs → Set isLeft (back xs≋zs) = ⊥ isLeft (left cmp w∼z) = ⊤ isLeft (right cmp x∼y) = ⊥ isLeft (front cmp w∼y) = isLeft cmp isRight : ∀ {ws xs ys zs} → Compare ws xs ys zs → Set isRight (back xs≋zs) = ⊥ isRight (left cmp w∼z) = ⊥ isRight (right cmp x∼y) = ⊤ isRight (front cmp w∼y) = isRight cmp isEqual : ∀ {ws xs ys zs} → Compare ws xs ys zs → Set isEqual (back xs≋zs) = ⊤ isEqual (left cmp w∼z) = ⊥ isEqual (right cmp x∼y) = ⊥ isEqual (front cmp w∼y) = isEqual cmp : ∀ {ws xs ys zs} → (cmp : Compare ws xs ys zs) → Tri (isLeft cmp) (isEqual cmp) (isRight cmp) (back xs≋zs) = tri≈ id _ id (left cmp w∼z) = tri< _ id id (right cmp x∼y) = tri> id id _ (front cmp w∼y) = cmp compare : ∀ ws xs ys zs → ws ++ xs ≋ ys ++ zs → Compare ws xs ys zs compare [] xs [] zs eq = back eq compare [] (x ∷ xs) (y ∷ ys) zs (x∼y ∷ eq) = right (compare [] xs ys zs eq) x∼y compare (w ∷ ws) xs [] (z ∷ zs) (w∼z ∷ eq) = left (compare ws xs [] zs eq) w∼z compare (w ∷ ws) xs (y ∷ ys) zs (w∼y ∷ eq) = front (compare ws xs ys zs eq) w∼y left-split : ∀ {ws xs ys zs} → (cmp : Compare ws xs ys zs) → isLeft cmp → ∃[ w ] ∃[ ws′ ] ws ≋ ys ++ w ∷ ws′ × w ∷ ws′ ++ xs ≋ zs left-split (left (back xs≋zs) w∼z) _ = -, -, ≋-refl , w∼z ∷ xs≋zs left-split (left (left cmp w′∼z′) w∼z) _ with left-split (left cmp w′∼z′) _ ... | (_ , _ , eq₁ , eq₂) = -, -, ∼-refl ∷ eq₁ , w∼z ∷ eq₂ left-split (front cmp w∼y) l with left-split cmp l ... | (_ , _ , eq₁ , eq₂) = -, -, w∼y ∷ eq₁ , eq₂ right-split : ∀ {ws xs ys zs} → (cmp : Compare ws xs ys zs) → isRight cmp → ∃[ y ] ∃[ ys′ ] ws ++ y ∷ ys′ ≋ ys × xs ≋ y ∷ ys′ ++ zs right-split (right (back xs≋zs) x∼y) _ = -, -, ≋-refl , x∼y ∷ xs≋zs right-split (right (right cmp x′∼y′) x∼y) _ with right-split (right cmp x′∼y′) _ ... | (_ , _ , eq₁ , eq₂) = -, -, ∼-refl ∷ eq₁ , x∼y ∷ eq₂ right-split (front cmp w∼y) r with right-split cmp r ... | (_ , _ , eq₁ , eq₂) = -, -, w∼y ∷ eq₁ , eq₂ eq-split : ∀ {ws xs ys zs} → (cmp : Compare ws xs ys zs) → isEqual cmp → ws ≋ ys × xs ≋ zs eq-split (back xs≋zs) e = [] , xs≋zs eq-split (front cmp w∼y) e = map₁ (w∼y ∷_) (eq-split cmp e) module _ {a b} (A : Language a) (B : Language b) where private module A = Language A module B = Language B infix 7 _∙_ record Concat (l : List C) : Set (c ⊔ ℓ ⊔ a ⊔ b) where field l₁ : List C l₂ : List C l₁∈A : l₁ ∈ A l₂∈B : l₂ ∈ B eq : l₁ ++ l₂ ≋ l _∙_ : Language (c ⊔ ℓ ⊔ a ⊔ b) _∙_ = record { 𝕃 = Concat ; ∈-resp-≋ = λ { l≋l′ record { l₁ = _ ; l₂ = _ ; l₁∈A = l₁∈A ; l₂∈B = l₂∈B ; eq = eq } → record { l₁∈A = l₁∈A ; l₂∈B = l₂∈B ; eq = ≋-trans eq l≋l′ } } } ∙-cong : ∀ {a} → Congruent₂ _≈_ (_∙_ {c ⊔ ℓ ⊔ a}) ∙-cong X≈Y U≈V = record { f = λ { record { l₁∈A = l₁∈X ; l₂∈B = l₂∈Y ; eq = eq } → record { l₁∈A = X≈Y.f l₁∈X ; l₂∈B = U≈V.f l₂∈Y ; eq = eq } } ; f⁻¹ = λ { record { l₁∈A = l₁∈Y ; l₂∈B = l₂∈V ; eq = eq } → record { l₁∈A = X≈Y.f⁻¹ l₁∈Y ; l₂∈B = U≈V.f⁻¹ l₂∈V ; eq = eq } } } where module X≈Y = _≈_ X≈Y module U≈V = _≈_ U≈V ∙-assoc : ∀ {a b c} (A : Language a) (B : Language b) (C : Language c) → (A ∙ B) ∙ C ≈ A ∙ (B ∙ C) ∙-assoc A B C = record { f = λ { record { l₂ = l₃ ; l₁∈A = record { l₁ = l₁ ; l₂ = l₂ ; l₁∈A = l₁∈A ; l₂∈B = l₂∈B ; eq = eq₁ } ; l₂∈B = l₃∈C ; eq = eq₂ } → record { l₁∈A = l₁∈A ; l₂∈B = record { l₁∈A = l₂∈B ; l₂∈B = l₃∈C ; eq = ≋-refl } ; eq = ≋-trans (≋-sym (≋-reflexive (++-assoc l₁ l₂ l₃))) (≋-trans (++⁺ eq₁ ≋-refl) eq₂) } } ; f⁻¹ = λ { record { l₁ = l₁ ; l₁∈A = l₁∈A ; l₂∈B = record { l₁ = l₂ ; l₂ = l₃ ; l₁∈A = l₂∈B ; l₂∈B = l₃∈C ; eq = eq₁ } ; eq = eq₂ } → record { l₁∈A = record { l₁∈A = l₁∈A ; l₂∈B = l₂∈B ; eq = ≋-refl } ; l₂∈B = l₃∈C ; eq = ≋-trans (≋-reflexive (++-assoc l₁ l₂ l₃)) (≋-trans (++⁺ ≋-refl eq₁) eq₂) } } } ∙-identityˡ : ∀ {a} → LeftIdentity _≈_ (𝕃.Lift (ℓ ⊔ a) {ε}) _∙_ ∙-identityˡ X = record { f = λ { record { l₁ = [] ; l₂∈B = l∈X ; eq = eq } → X.∈-resp-≋ eq l∈X } ; f⁻¹ = λ l∈X → record { l₁∈A = lift ≡.refl ; l₂∈B = l∈X ; eq = ≋-refl } } where module X = Language X ∙-unique-prefix : ∀ {a b} (A : Language a) (B : Language b) → Empty (flast A ∩ first B) → ¬ (null A) → ∀ {l} → (l∈A∙B l∈A∙B′ : l ∈ A ∙ B) → Concat.l₁ l∈A∙B ≋ Concat.l₁ l∈A∙B′ × Concat.l₂ l∈A∙B ≋ Concat.l₂ l∈A∙B′ ∙-unique-prefix A B ∄[l₁∩f₂] ¬n₁ l∈A∙B l∈A∙B′ with Compare.compare (Concat.l₁ l∈A∙B) (Concat.l₂ l∈A∙B) (Concat.l₁ l∈A∙B′) (Concat.l₂ l∈A∙B′) (≋-trans (Concat.eq l∈A∙B) (≋-sym (Concat.eq l∈A∙B′))) ... | cmp with Compare. cmp ... | tri< l _ _ = ⊥-elim (∄[l₁∩f₂] w ((-, (λ { ≡.refl → ¬n₁ (Concat.l₁∈A l∈A∙B′)}) , (Concat.l₁∈A l∈A∙B′) , -, A.∈-resp-≋ eq₃ (Concat.l₁∈A l∈A∙B)) , (-, B.∈-resp-≋ (≋-sym eq₄) (Concat.l₂∈B l∈A∙B′)))) where module A = Language A module B = Language B lsplit = Compare.left-split cmp l w = proj₁ lsplit eq₃ = (proj₁ ∘ proj₂ ∘ proj₂) lsplit eq₄ = (proj₂ ∘ proj₂ ∘ proj₂) lsplit ... | tri≈ _ e _ = Compare.eq-split cmp e ... | tri> _ _ r = ⊥-elim (∄[l₁∩f₂] w ((-, (λ { ≡.refl → ¬n₁ (Concat.l₁∈A l∈A∙B)}) , (Concat.l₁∈A l∈A∙B) , -, A.∈-resp-≋ (≋-sym eq₃) (Concat.l₁∈A l∈A∙B′)) , (-, (B.∈-resp-≋ eq₄ (Concat.l₂∈B l∈A∙B))))) where module A = Language A module B = Language B rsplit = Compare.right-split cmp r w = proj₁ rsplit eq₃ = (proj₁ ∘ proj₂ ∘ proj₂) rsplit eq₄ = (proj₂ ∘ proj₂ ∘ proj₂) rsplit ∙-identityʳ : ∀ {a} → RightIdentity _≈_ (𝕃.Lift (ℓ ⊔ a) {ε}) _∙_ ∙-identityʳ X = record { f = λ { record { l₁ = l₁ ; l₂ = [] ; l₁∈A = l∈X ; eq = eq } → X.∈-resp-≋ (≋-trans (≋-sym (≋-reflexive (++-identityʳ l₁))) eq) l∈X } ; f⁻¹ = λ {l} l∈X → record { l₁∈A = l∈X ; l₂∈B = lift ≡.refl ; eq = ≋-reflexive (++-identityʳ l) } } where module X = Language X isMagma : ∀ {a} → IsMagma _≈_ (_∙_ {c ⊔ ℓ ⊔ a}) isMagma {a} = record { isEquivalence = ≈-isEquivalence ; ∙-cong = ∙-cong {a} } isSemigroup : ∀ {a} → IsSemigroup _≈_ (_∙_ {c ⊔ ℓ ⊔ a}) isSemigroup {a} = record { isMagma = isMagma {a} ; assoc = ∙-assoc } isMonoid : ∀ {a} → IsMonoid _≈_ _∙_ (𝕃.Lift (ℓ ⊔ a) {ε}) isMonoid {a} = record { isSemigroup = isSemigroup {a} ; identity = ∙-identityˡ {a} , ∙-identityʳ {a} }