{-# OPTIONS --without-K --safe #-} open import Function open import Relation.Binary import Relation.Binary.PropositionalEquality as ≡ module Cfe.Language.Construct.Single {c ℓ} (over : Setoid c ℓ) (≈-trans-bijₗ : ∀ {a b c b≈c} → Bijective ≡._≡_ ≡._≡_ (flip (Setoid.trans over {a} {b} {c}) b≈c)) (≈-trans-reflₗ : ∀ {a b a≈b} → Setoid.trans over {a} a≈b (Setoid.refl over {b}) ≡.≡ a≈b) (≈-trans-symₗ : ∀ {a b c a≈b a≈c b≈c} → Setoid.trans over {a} {b} {c} a≈b b≈c ≡.≡ a≈c → Setoid.trans over a≈c (Setoid.sym over b≈c) ≡.≡ a≈b) (≈-trans-transₗ : ∀ {a b c d a≈b a≈c a≈d b≈c c≈d} → Setoid.trans over {a} {b} a≈b b≈c ≡.≡ a≈c → Setoid.trans over {a} {c} {d} a≈c c≈d ≡.≡ a≈d → Setoid.trans over a≈b (Setoid.trans over b≈c c≈d) ≡.≡ a≈d) where open Setoid over renaming (Carrier to C) open import Cfe.Language over hiding (_≈_) open import Data.List open import Data.List.Relation.Binary.Equality.Setoid over open import Data.Product as Product open import Level private ∷-inj : {a b : C} {l₁ l₂ : List C} {a≈b a≈b′ : a ≈ b} {l₁≋l₂ l₁≋l₂′ : l₁ ≋ l₂} → ≡._≡_ {A = a ∷ l₁ ≋ b ∷ l₂} (a≈b ∷ l₁≋l₂) (a≈b′ ∷ l₁≋l₂′) → (a≈b ≡.≡ a≈b′) × (l₁≋l₂ ≡.≡ l₁≋l₂′) ∷-inj ≡.refl = ≡.refl , ≡.refl ≋-trans-injₗ : {x l₁ l₂ : List C} → {l₁≋l₂ : l₁ ≋ l₂} → Injective ≡._≡_ ≡._≡_ (flip (≋-trans {x}) l₁≋l₂) ≋-trans-injₗ {_} {_} {_} {_} {[]} {[]} _ = ≡.refl ≋-trans-injₗ {_} {_} {_} {_ ∷ _} {_ ∷ _} {_ ∷ _} = uncurry (≡.cong₂ _∷_) ∘ Product.map (proj₁ ≈-trans-bijₗ) ≋-trans-injₗ ∘ ∷-inj ≋-trans-surₗ : {x l₁ l₂ : List C} → {l₁≋l₂ : l₁ ≋ l₂} → Surjective {A = x ≋ l₁} ≡._≡_ ≡._≡_ (flip (≋-trans {x}) l₁≋l₂) ≋-trans-surₗ {_} {_} {_} {[]} [] = [] , ≡.refl ≋-trans-surₗ {_} {_} {_} {_ ∷ _} (a≈c ∷ x≋l₂) = Product.zip _∷_ (≡.cong₂ _∷_) (proj₂ ≈-trans-bijₗ a≈c) (≋-trans-surₗ x≋l₂) ≋-trans-reflₗ : {l₁ l₂ : List C} {l₁≋l₂ : l₁ ≋ l₂} → ≋-trans l₁≋l₂ ≋-refl ≡.≡ l₁≋l₂ ≋-trans-reflₗ {_} {_} {[]} = ≡.refl ≋-trans-reflₗ {_} {_} {a≈b ∷ l₁≋l₂} = ≡.cong₂ _∷_ ≈-trans-reflₗ ≋-trans-reflₗ ≋-trans-symₗ : {l₁ l₂ l₃ : List C} {l₁≋l₂ : l₁ ≋ l₂} {l₁≋l₃ : l₁ ≋ l₃} {l₂≋l₃ : l₂ ≋ l₃} → ≋-trans l₁≋l₂ l₂≋l₃ ≡.≡ l₁≋l₃ → ≋-trans l₁≋l₃ (≋-sym l₂≋l₃) ≡.≡ l₁≋l₂ ≋-trans-symₗ {_} {_} {_} {[]} {[]} {[]} _ = ≡.refl ≋-trans-symₗ {_} {_} {_} {_ ∷ _} {_ ∷ _} {_ ∷ _} = uncurry (≡.cong₂ _∷_) ∘ Product.map ≈-trans-symₗ ≋-trans-symₗ ∘ ∷-inj ≋-trans-transₗ : {l₁ l₂ l₃ l₄ : List C} → {l₁≋l₂ : l₁ ≋ l₂} {l₁≋l₃ : l₁ ≋ l₃} {l₁≋l₄ : l₁ ≋ l₄} {l₂≋l₃ : l₂ ≋ l₃} {l₃≋l₄ : l₃ ≋ l₄} → ≋-trans l₁≋l₂ l₂≋l₃ ≡.≡ l₁≋l₃ → ≋-trans l₁≋l₃ l₃≋l₄ ≡.≡ l₁≋l₄ → ≋-trans l₁≋l₂ (≋-trans l₂≋l₃ l₃≋l₄) ≡.≡ l₁≋l₄ ≋-trans-transₗ {l₁≋l₂ = []} {[]} {[]} {[]} {[]} _ _ = ≡.refl ≋-trans-transₗ {l₁≋l₂ = _ ∷ _} {_ ∷ _} {_ ∷ _} {_ ∷ _} {_ ∷ _} = uncurry (≡.cong₂ _∷_) ∘₂ uncurry (Product.zip ≈-trans-transₗ ≋-trans-transₗ) ∘₂ curry (Product.map ∷-inj ∷-inj) {_} : C → Language (c ⊔ ℓ) (c ⊔ ℓ) { c } = record { Carrier = [ c ] ≋_ ; _≈_ = λ l≋m l≋n → ∃[ m≋n ] ≋-trans l≋m m≋n ≡.≡ l≋n ; isEquivalence = record { refl = ≋-refl , ≋-trans-reflₗ ; sym = Product.map ≋-sym ≋-trans-symₗ ; trans = Product.zip ≋-trans ≋-trans-transₗ } }