{-# OPTIONS --without-K --safe #-} open import Relation.Binary as B using (Setoid) module Cfe.Language.Indexed.Construct.Iterate {c ℓ} (over : Setoid c ℓ) where open Setoid over using () renaming (Carrier to C) open import Algebra open import Cfe.Language over as L open import Cfe.Language.Indexed.Homogeneous over open import Data.List open import Data.Nat as ℕ hiding (_⊔_; _≤_; _^_) open import Data.Product as Product open import Function open import Level hiding (Lift) renaming (suc to lsuc) open import Relation.Binary.Indexed.Heterogeneous open import Relation.Binary.PropositionalEquality as ≡ open IndexedLanguage infix 9 _^_ _^_ : ∀ {a} {A : Set a} → Op₁ A → ℕ → Op₁ A f ^ zero = id f ^ (suc n) = f ∘ (f ^ n) f-fn-x≡fn-f-x : ∀ {a} {A : Set a} (f : A → A) n x → f ((f ^ n) x) ≡ (f ^ n) (f x) f-fn-x≡fn-f-x f ℕ.zero x = refl f-fn-x≡fn-f-x f (suc n) x = ≡.cong f (f-fn-x≡fn-f-x f n x) module _ {a aℓ} (A : B.Setoid a aℓ) where private module A = B.Setoid A f≈g⇒fn≈gn : {f g : A.Carrier → A.Carrier} → (∀ {x y} → x A.≈ y → f x A.≈ g y) → ∀ n x → (f ^ n) x A.≈ (g ^ n) x f≈g⇒fn≈gn f≈g ℕ.zero x = A.refl f≈g⇒fn≈gn f≈g (suc n) x = f≈g (f≈g⇒fn≈gn f≈g n x) module _ {a aℓ₁ aℓ₂} (A : B.Poset a aℓ₁ aℓ₂) where private module A = B.Poset A f≤g⇒fn≤gn : {f g : A.Carrier → A.Carrier} → (∀ {x y} → x A.≤ y → f x A.≤ g y) → ∀ n x → (f ^ n) x A.≤ (g ^ n) x f≤g⇒fn≤gn f≤g ℕ.zero x = A.refl f≤g⇒fn≤gn f≤g (suc n) x = f≤g (f≤g⇒fn≤gn f≤g n x) module _ {a} where Iterate : (Language a → Language a) → IndexedLanguage 0ℓ 0ℓ a Iterate f = record { Carrierᵢ = ℕ ; _≈ᵢ_ = ≡._≡_ ; isEquivalenceᵢ = ≡.isEquivalence ; F = λ n → (f ^ n) (Lift a ∅) ; cong = λ {≡.refl → ≈-refl} } ⋃ : (Language a → Language a) → Language a ⋃ f = record { 𝕃 = Iter.Tagged ; ∈-resp-≋ = λ { l₁≋l₂ (i , l₁∈fi) → i , Language.∈-resp-≋ (Iter.F i) l₁≋l₂ l₁∈fi } } where module Iter = IndexedLanguage (Iterate f) ⋃-cong : ∀ {f g} → (∀ {x y} → x ≈ y → f x ≈ g y) → ⋃ f ≈ ⋃ g ⋃-cong f≈g = record { f = λ { (n , l∈fn) → n , _≈_.f (f≈g⇒fn≈gn (L.setoid a) f≈g n (Lift a ∅)) l∈fn} ; f⁻¹ = λ { (n , l∈gn) → n , _≈_.f⁻¹ (f≈g⇒fn≈gn (L.setoid a) f≈g n (Lift a ∅)) l∈gn} } ⋃-mono : ∀ {f g} → (∀ {x y} → x ≤ y → f x ≤ g y) → ⋃ f ≤ ⋃ g ⋃-mono f≤g = record { f = λ { (n , l∈fn) → n , _≤_.f (f≤g⇒fn≤gn (poset a) f≤g n (Lift a ∅)) l∈fn } }