summaryrefslogtreecommitdiff
path: root/src/Cfe/Context/Base.agda
blob: 6b7a9dc9ed72bbc1c7657d958266975a5b9a3d03 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
{-# OPTIONS --without-K --safe #-}

open import Relation.Binary using (Setoid; Rel)

module Cfe.Context.Base
  {c ℓ} (over : Setoid c ℓ)
  where

open import Cfe.Type over
open import Data.Empty
open import Data.Fin as F hiding (cast)
open import Data.Fin.Properties hiding (≤-trans)
open import Data.Nat as ℕ hiding (_⊔_)
open import Data.Nat.Properties
open import Data.Product
open import Data.Vec
open import Level renaming (suc to lsuc)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary

cast : ∀ {a A m n} → .(m ≡ n) → Vec {a} A m → Vec {a} A n
cast {m = 0} {0} eq [] = []
cast {m = suc _} {suc n} eq (x ∷ xs) = x ∷ cast (cong ℕ.pred eq) xs

reduce≥′ : ∀ {m n} → .(m ℕ.≤ n) → (i : Fin n) → toℕ i ≥ m → Fin (n ∸ m)
reduce≥′ {ℕ.zero} {n} m≤n i i≥m = i
reduce≥′ {suc m} {suc n} m≤n (suc i) (s≤s i≥m) = reduce≥′ (pred-mono m≤n) i i≥m

private
  insert′ : ∀ {a A m n} → Vec {a} A (n ∸ m) → m ℕ.≤ n → m ≢ 0 → (i : Fin (n ∸ ℕ.pred m)) → A → Vec A (n ∸ ℕ.pred m)
  insert′ {a} {A} {ℕ.zero} {n} xs m≤n m≢0 i x = ⊥-elim (m≢0 refl)
  insert′ {a} {A} {suc ℕ.zero} {suc _} xs _ _ F.zero x = x ∷ xs
  insert′ {a} {A} {suc ℕ.zero} {suc (suc n)} (y ∷ xs) _ _ (suc i) x = y ∷ insert′ {m = suc ℕ.zero} {suc n} xs (s≤s z≤n) (λ ()) i x
  insert′ {a} {A} {suc (suc m)} {suc ℕ.zero} xs m≤n _ i x = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) m≤n)
  insert′ {a} {A} {suc (suc m)} {suc (suc n)} xs m≤n _ i x = insert′ {m = suc m} xs (pred-mono m≤n) (λ ()) i x

  reduce≥′-mono : ∀ {m n} → .(m≤n : m ℕ.≤ n) → (i j : Fin n) → (i≥m : toℕ i ≥ m) → (i≤j : i F.≤ j) → reduce≥′ m≤n i i≥m F.≤ reduce≥′ m≤n j (≤-trans i≥m i≤j)
  reduce≥′-mono {ℕ.zero} {n} m≤n i j i≥m i≤j = i≤j
  reduce≥′-mono {suc m} {suc n} m≤n (suc i) (suc j) (s≤s i≥m) (s≤s i≤j) = reduce≥′-mono (pred-mono m≤n) i j i≥m i≤j

  remove′ : ∀ {a A m} → Vec {a} A m → .(m ≢ 0) → Fin m → Vec A (ℕ.pred m)
  remove′ (x ∷ xs) m≢0 F.zero = xs
  remove′ (x ∷ y ∷ xs) m≢0 (suc i) = x ∷ remove′ (y ∷ xs) (λ ()) i

  rotate : ∀ {a A n} → (i j : Fin n) → .(i F.≤ j) → Vec {a} A n → Vec A n
  rotate F.zero j i≤j (x ∷ xs) = insert xs j x
  rotate (suc i) (suc j) i≤j (x ∷ xs) = x ∷ (rotate i j (pred-mono i≤j) xs)

record Context n : Set (c ⊔ lsuc ℓ) where
  field
    m : ℕ
    m≤n : m ℕ.≤ n
    Γ : Vec (Type ℓ ℓ) (n ∸ m)
    Δ : Vec (Type ℓ ℓ) m

wkn₁ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → (toℕ i ≥ Context.m Γ,Δ) → Type ℓ ℓ → Context (suc n)
wkn₁ Γ,Δ i i≥m τ = record
  { m≤n = ≤-step m≤n
  ; Γ = cast (sym (+-∸-assoc 1 m≤n)) (insert Γ (F.cast (+-∸-assoc 1 m≤n) (reduce≥′ (≤-step m≤n) i i≥m)) τ)
  ; Δ = Δ
  }
  where
  open Context Γ,Δ

wkn₂ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → toℕ i ℕ.≤ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n)
wkn₂ Γ,Δ i i≤m τ = record
  { m≤n = s≤s m≤n
  ; Γ = Γ
  ; Δ = insert Δ (fromℕ< (s≤s i≤m)) τ
  }
  where
  open Context Γ,Δ

rotate₁ : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → toℕ i ≥ Context.m Γ,Δ → (i F.≤ j) → Context n
rotate₁ {n} Γ,Δ i j i≥m i≤j = record
  { m≤n = m≤n
  ; Γ = rotate (reduce≥′ m≤n i i≥m) (reduce≥′ m≤n j (≤-trans i≥m i≤j)) (reduce≥′-mono m≤n i j i≥m i≤j) Γ
  ; Δ = Δ
  }
  where
  open Context Γ,Δ

rotate₂ : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → (toℕ j ℕ.< Context.m Γ,Δ) → (i F.≤ j) → Context n
rotate₂ {n} Γ,Δ i j j<m i≤j = record
  { m≤n = m≤n
  ; Γ = Γ
  ; Δ = rotate
    (fromℕ< (≤-trans (s≤s i≤j) j<m))
    (fromℕ< j<m)
    (begin
      toℕ (fromℕ< (≤-trans (s≤s i≤j) j<m)) ≡⟨ toℕ-fromℕ< (≤-trans (s≤s i≤j) j<m) ⟩
      toℕ i ≤⟨ i≤j ⟩
      toℕ j ≡˘⟨ toℕ-fromℕ< j<m ⟩
      toℕ (fromℕ< j<m) ∎)
    Δ
  }
  where
  open Context Γ,Δ
  open ≤-Reasoning

transfer : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → (toℕ i ℕ.< Context.m Γ,Δ) → (suc (toℕ j) ≥ Context.m Γ,Δ) → Context n
transfer {n} Γ,Δ i j i<m 1+j≥m with Context.m Γ,Δ ℕ.≟ 0
... | yes m≡0 = ⊥-elim (m<n⇒n≢0 i<m m≡0)
... | no m≢0 = record
  { m≤n = pred-mono (≤-step m≤n)
  ; Γ = insert′ Γ m≤n m≢0 (reduce≥′ (pred-mono (≤-step m≤n)) j (pred-mono 1+j≥m)) (lookup Δ (fromℕ< i<m))
  ; Δ = remove′ Δ m≢0 (fromℕ< i<m)
  }
  where
  open Context Γ,Δ

cons : ∀ {n} → Context n → Type ℓ ℓ → Context (suc n)
cons {n} Γ,Δ τ = record
  { m≤n = s≤s m≤n
  ; Γ = Γ
  ; Δ = τ ∷ Δ
  }
  where
  open Context Γ,Δ

shift : ∀ {n} → Context n → Context n
shift {n} Γ,Δ = record
  { m≤n = z≤n
  ; Γ = cast (trans (sym (+-∸-assoc m m≤n)) (m+n∸m≡n m n)) (Δ ++ Γ)
  ; Δ = []
  }
  where
  open Context Γ,Δ

_≋_ : ∀ {n} → Rel (Context n) (c ⊔ lsuc ℓ)
Γ,Δ ≋ Γ,Δ′ = Σ (Context.m Γ,Δ ≡ Context.m Γ,Δ′) λ {refl → Context.Γ Γ,Δ ≡ Context.Γ Γ,Δ′ × Context.Δ Γ,Δ ≡ Context.Δ Γ,Δ′}