1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
|
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (Setoid; Symmetric; Transitive)
module Cfe.Context.Properties
{c ℓ} (over : Setoid c ℓ)
where
open import Cfe.Context.Base over as C
open import Cfe.Type over
open import Data.Empty
open import Data.Fin as F
open import Data.Nat as ℕ
open import Data.Nat.Properties
open import Data.Product
open import Data.Vec
open import Function
open import Relation.Binary.PropositionalEquality
≋-sym : ∀ {n} → Symmetric (_≋_ {n})
≋-sym (refl , refl , refl) = refl , refl , refl
≋-trans : ∀ {n} → Transitive (_≋_ {n})
≋-trans (refl , refl , refl) (refl , refl , refl) = refl , refl , refl
shift≤-wkn₁-comm : ∀ {n i j} Γ,Δ i≤m j≥m τ →
shift≤ {i = i} (wkn₁ {n} {j} Γ,Δ j≥m τ) i≤m ≋
wkn₁ (shift≤ Γ,Δ i≤m) (≤-trans i≤m j≥m) τ
shift≤-wkn₁-comm record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i≤m j≥m τ =
refl , eq Γ Δ m≤n i≤m j≥m τ , refl
where
eq : ∀ {a A n m i j} xs ys (m≤n : m ℕ.≤ n) (i≤m : i ℕ.≤ m) (j≥m : toℕ {suc n} j ≥ m) y →
drop′ {a} {A} (≤-step m≤n) i≤m (ys ++ (insert′ xs (s≤s m≤n) (reduce≥′ (≤-step m≤n) j≥m) y)) ≡
insert′ (drop′ m≤n i≤m (ys ++ xs)) (s≤s (≤-trans i≤m m≤n)) (reduce≥′ (≤-step (≤-trans i≤m m≤n)) (≤-trans i≤m j≥m)) y
eq _ [] z≤n z≤n _ _ = refl
eq {j = suc _} xs (x ∷ ys) (s≤s m≤n) z≤n (s≤s j≥m) y = cong (x ∷_) (eq xs ys m≤n z≤n j≥m y)
eq {j = suc _} xs (_ ∷ ys) (s≤s m≤n) (s≤s i≤m) (s≤s j≥m) y = eq xs ys m≤n i≤m j≥m y
shift≤-wkn₂-comm-≤ : ∀ {n i j} Γ,Δ i≤j j≤m τ →
shift≤ {i = i} (wkn₂ {n} {j} Γ,Δ j≤m τ) (≤-trans i≤j (≤-step j≤m)) ≋
wkn₁ (shift≤ Γ,Δ (≤-trans i≤j j≤m)) i≤j τ
shift≤-wkn₂-comm-≤ record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i≤j j≤m τ =
refl , eq₁ Γ Δ m≤n i≤j j≤m τ , eq₂ Δ i≤j j≤m τ
where
eq₁ : ∀ {a A n m i j} xs ys (m≤n : m ℕ.≤ n) (i≤j : i ℕ.≤ toℕ {suc n} j) (j≤m : toℕ j ℕ.≤ m) y →
drop′ {a} {A} (s≤s m≤n) (≤-trans i≤j (≤-step j≤m)) (insert ys (fromℕ< (s≤s j≤m)) y ++ xs) ≡
insert′
(drop′ m≤n (≤-trans i≤j j≤m) (ys ++ xs))
(s≤s (≤-trans (≤-trans i≤j j≤m) m≤n))
(reduce≥′ (≤-step (≤-trans (≤-trans i≤j j≤m) m≤n)) i≤j)
y
eq₁ {j = zero} _ _ _ z≤n _ _ = refl
eq₁ {j = suc j} xs (x ∷ ys) (s≤s m≤n) z≤n (s≤s j≤m) y = cong (x ∷_) (eq₁ xs ys m≤n z≤n j≤m y)
eq₁ {j = suc j} xs (x ∷ ys) (s≤s m≤n) (s≤s i≤j) (s≤s j≤m) y = eq₁ xs ys m≤n i≤j j≤m y
eq₂ : ∀ {a A n m i j} ys (i≤j : i ℕ.≤ toℕ {suc n} j) (j≤m : toℕ j ℕ.≤ m) y →
take′ {a} {A} (≤-trans i≤j (≤-step j≤m)) (insert ys (fromℕ< (s≤s j≤m)) y) ≡
take′ (≤-trans i≤j j≤m) ys
eq₂ {j = zero} _ z≤n _ _ = refl
eq₂ {j = suc _} _ z≤n _ _ = refl
eq₂ {j = suc zero} (_ ∷ _) (s≤s z≤n) (s≤s _) _ = refl
eq₂ {j = suc (suc _)} (x ∷ ys) (s≤s i≤j) (s≤s j≤m) y = cong (x ∷_) (eq₂ ys i≤j j≤m y)
shift≤-wkn₂-comm-> : ∀ {n i j} Γ,Δ i≤j j≤m τ →
shift≤ {i = suc j} (wkn₂ {n} {i} Γ,Δ (≤-trans i≤j j≤m) τ) (s≤s j≤m) ≋
wkn₂ (shift≤ Γ,Δ j≤m) i≤j τ
shift≤-wkn₂-comm-> record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i≤j j≤m τ = refl , eq₁ Γ Δ m≤n i≤j j≤m τ , eq₂ Δ m≤n i≤j j≤m τ
where
eq₁ : ∀ {a A n m i j} xs ys (m≤n : m ℕ.≤ n) (i≤j : toℕ {suc n} i ℕ.≤ j) (j≤m : j ℕ.≤ m) y →
drop′ {a} {A} (s≤s m≤n) (s≤s j≤m) (insert ys (fromℕ< (s≤s (≤-trans i≤j j≤m))) y ++ xs) ≡
drop′ m≤n j≤m (ys ++ xs)
eq₁ {i = zero} _ _ _ _ _ _ = refl
eq₁ {i = suc _} xs (_ ∷ ys) (s≤s m≤n) (s≤s i≤j) (s≤s j≤m) y = eq₁ xs ys m≤n i≤j j≤m y
eq₂ : ∀ {a A n m i j} ys (m≤n : m ℕ.≤ n) (i≤j : toℕ {suc n} i ℕ.≤ j) (j≤m : j ℕ.≤ m) y →
take′ {a} {A} (s≤s j≤m) (insert ys (fromℕ< (s≤s (≤-trans i≤j j≤m))) y) ≡
insert (take′ j≤m ys) (fromℕ< (s≤s i≤j)) y
eq₂ {i = zero} _ _ _ _ _ = refl
eq₂ {i = suc _} (x ∷ ys) (s≤s m≤n) (s≤s i≤j) (s≤s j≤m) y = cong (x ∷_) (eq₂ ys m≤n i≤j j≤m y)
shift≤-identity : ∀ {n} Γ,Δ → shift≤ {n} Γ,Δ ≤-refl ≋ Γ,Δ
shift≤-identity record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } = refl , eq₁ Γ Δ m≤n , eq₂ Δ
where
eq₁ : ∀ {a A n m} xs ys (m≤n : m ℕ.≤ n) → drop′ {a} {A} m≤n ≤-refl (ys ++ xs) ≡ xs
eq₁ xs [] z≤n = refl
eq₁ xs (_ ∷ ys) (s≤s m≤n) = eq₁ xs ys m≤n
eq₂ : ∀ {a A m} ys → take′ {a} {A} {m} ≤-refl ys ≡ ys
eq₂ [] = refl
eq₂ (x ∷ ys) = cong (x ∷_) (eq₂ ys)
shift≤-idem : ∀ {n i j} Γ,Δ i≤j j≤m → shift≤ {n} {i} (shift≤ {i = j} Γ,Δ j≤m) i≤j ≋ shift≤ Γ,Δ (≤-trans i≤j j≤m)
shift≤-idem record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i≤j j≤m = refl , eq₁ Γ Δ m≤n i≤j j≤m , eq₂ Δ i≤j j≤m
where
eq₁ : ∀ {a A n m i j} xs ys (m≤n : m ℕ.≤ n) (i≤j : i ℕ.≤ j) (j≤m : j ℕ.≤ m) →
drop′ {a} {A} (≤-trans j≤m m≤n) i≤j (take′ j≤m ys ++ drop′ m≤n j≤m (ys ++ xs)) ≡
drop′ m≤n (≤-trans i≤j j≤m) (ys ++ xs)
eq₁ _ _ _ z≤n z≤n = refl
eq₁ xs (y ∷ ys) (s≤s m≤n) z≤n (s≤s j≤m) = cong (y ∷_) (eq₁ xs ys m≤n z≤n j≤m)
eq₁ xs (_ ∷ ys) (s≤s m≤n) (s≤s i≤j) (s≤s j≤m) = eq₁ xs ys m≤n i≤j j≤m
eq₂ : ∀ {a A m i j} ys (i≤j : i ℕ.≤ j) (j≤m : j ℕ.≤ m) → take′ {a} {A} i≤j (take′ j≤m ys) ≡ take′ (≤-trans i≤j j≤m) ys
eq₂ ys z≤n j≤m = refl
eq₂ (y ∷ ys) (s≤s i≤j) (s≤s j≤m) = cong (y ∷_) (eq₂ ys i≤j j≤m)
-- rotate₁-shift : ∀ {n i j} Γ,Δ i≥m i≤j → rotate₁ {n} {i} {j} (shift Γ,Δ) z≤n i≤j ≋ shift (rotate₁ Γ,Δ i≥m i≤j)
-- rotate₁-shift record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i≥m i≤j =
-- refl ,
-- eq Γ Δ m≤n i≥m i≤j ,
-- refl
-- where
-- eq : ∀ {a A m n i j} xs ys (m≤n : m ℕ.≤ n) i≥m i≤j → ?
-- -- rotate {a} {A} i j i≤j (C.cast (trans (sym (+-∸-assoc m m≤n)) (m+n∸m≡n m n)) (ys ++ xs)) ≡
-- -- C.cast (trans (sym (+-∸-assoc m m≤n)) (m+n∸m≡n m n)) (ys ++ rotate (reduce≥′ m≤n i i≥m) (reduce≥′ m≤n j (≤-trans i≥m i≤j)) (reduce≥′-mono m≤n i j i≥m i≤j) xs)
-- eq xs ys m≤n i≥m i≤j = ?
-- -- eq {m = zero} {suc _} (x ∷ xs) [] _ zero j _ _ = sym (cast-insert xs refl j j refl x)
-- -- eq {m = zero} (x ∷ xs) [] _ (suc i) (suc j) _ i≤j = cong (x ∷_) (eq xs [] z≤n i j z≤n (pred-mono i≤j))
-- -- eq {m = suc _} {suc _} xs (y ∷ ys) m≤n (suc i) (suc j) (s≤s i≥m) (s≤s i≤j) = cong (y ∷_) (eq xs ys (pred-mono m≤n) i j i≥m i≤j)
-- transfer-cons : ∀ {n i j} Γ,Δ i<m 1+j≥m τ → transfer {suc n} {suc i} {suc j} (cons Γ,Δ τ) (s≤s i<m) 1+j≥m ≋ cons (transfer Γ,Δ i<m (pred-mono 1+j≥m)) τ
-- transfer-cons record { m = suc m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i<m 1+j≥m τ =
-- refl , eq₁ Γ Δ m≤n (fromℕ< i<m) 1+j≥m τ , eq₂ Δ (fromℕ< i<m) τ
-- where
-- eq₁ : ∀ {a A m n j} xs ys (m≤n : suc m ℕ.≤ n) i 1+j≥m y → ? ≡ ?
-- -- insert′ {a} {A} xs (s≤s m≤n) (reduce≥′ (≤-step m≤n) 1+j≥m) (lookup (y ∷ ys) (suc i)) ≡
-- -- insert′ xs m≤n (reduce≥′ (pred-mono (≤-step m≤n)) (pred-mono 1+j≥m)) (lookup ys i)
-- eq₁ xs ys m≤n i 1+j≥m y = ?
-- -- eq₁ {m = zero} {suc _} xs ys m≤n i j 1+j≥m y = refl
-- -- eq₁ {m = suc m} xs ys m≤n i zero 1+j≥m x = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) (≤-recomputable 1+j≥m))
-- -- eq₁ {m = suc m} {suc _} xs (x ∷ ys) m≤n i (suc j) 1+j≥m y = refl
-- eq₂ : ∀ {a A m} ys (i : Fin (suc m)) y →
-- remove′ {a} {A} (y ∷ ys) (suc i) ≡ y ∷ remove′ ys i
-- eq₂ (x ∷ ys) i y = refl
-- transfer-shift : ∀ {n i j} (Γ,Δ : Context n) i j i<m 1+j≥m → rotate₁ (shift Γ,Δ) z≤n (pred-mono (≤-trans i<m 1+j≥m)) ≋ shift (transfer Γ,Δ i j i<m 1+j≥m)
-- transfer-shift record { m = suc m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i j i<m 1+j≥m =
-- refl ,
-- eq Γ Δ m≤n i j i<m 1+j≥m ,
-- refl
-- where
-- eq : ∀ {a A m n} xs ys .(m≤n : suc m ℕ.≤ n) i j i<m .(1+j≥m : _) →
-- rotate {a} {A} i j
-- (pred-mono {_} {suc (toℕ j)} (≤-trans i<m 1+j≥m))
-- (C.cast (trans (sym (+-∸-assoc (suc m) m≤n)) (m+n∸m≡n (suc m) n)) (ys ++ xs)) ≡
-- C.cast
-- (trans (sym (+-∸-assoc m (pred-mono (≤-step m≤n)))) (m+n∸m≡n (suc m) n))
-- ( remove′ ys (λ ()) (fromℕ< i<m) ++
-- insert′ xs m≤n (λ ())
-- (reduce≥′ (pred-mono (≤-step m≤n)) j (pred-mono 1+j≥m))
-- (lookup ys (fromℕ< i<m)))
-- eq {m = zero} {suc _} xs (y ∷ []) m≤n zero zero i<m 1+j≥m = refl
-- eq {m = zero} {suc (suc _)} (x ∷ xs) (y ∷ []) _ zero (suc j) _ _ = cong (x ∷_) (eq xs (y ∷ []) (s≤s z≤n) zero j (s≤s z≤n) (s≤s z≤n))
-- eq {m = zero} {suc _} _ (_ ∷ []) _ (suc _) _ (s≤s ()) _
-- eq {m = suc _} {suc _} _ (_ ∷ _) _ _ zero _ 1+j≥m = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) (≤-recomputable 1+j≥m))
-- eq {m = suc _} {suc (suc _)} xs (x ∷ y ∷ ys) m≤n zero (suc j) i<m 1+j≥m = cong (y ∷_) (eq xs (x ∷ ys) (pred-mono m≤n) zero j (s≤s z≤n) (pred-mono 1+j≥m))
-- eq {m = suc _} {suc (suc _)} xs (x ∷ y ∷ ys) m≤n (suc i) (suc j) (s≤s i<m) 1+j≥m = cong (x ∷_) (eq xs (y ∷ ys) (pred-mono m≤n) i j i<m (pred-mono 1+j≥m))
|