1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
|
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (Setoid)
module Cfe.Derivation.Properties
{c ℓ} (over : Setoid c ℓ)
where
open Setoid over using () renaming (Carrier to C)
open import Cfe.Context over using (∙,∙)
open import Cfe.Derivation.Base over
open import Cfe.Expression over
open import Cfe.Fin using (zero)
open import Cfe.Judgement over
open import Cfe.Language over hiding (_∙_)
open import Cfe.Type over using (_⊛_; _⊨_)
open import Data.Fin using (zero)
open import Data.List using (List; []; length)
open import Data.List.Relation.Binary.Pointwise using ([]; _∷_)
open import Data.Nat.Properties using (n<1+n; module ≤-Reasoning)
open import Data.Product using (_×_; _,_; -,_)
open import Data.Sum using (inj₁; inj₂)
open import Data.Vec using ([]; [_])
open import Data.Vec.Relation.Binary.Pointwise.Inductive using ([]; _∷_)
open import Function using (_∘_)
open import Induction.WellFounded
open import Level using (_⊔_)
open import Relation.Binary.PropositionalEquality using (refl)
import Relation.Binary.Reasoning.PartialOrder (⊆-poset {c ⊔ ℓ}) as ⊆-Reasoning
open import Relation.Nullary using (¬_)
w∈⟦e⟧⇒e⤇w : ∀ {e τ} → ∙,∙ ⊢ e ∶ τ → ∀ {w} → w ∈ ⟦ e ⟧ [] → e ⤇ w
w∈⟦e⟧⇒e⤇w {e = e} ctx⊢e∶τ {w} w∈⟦e⟧ = All.wfRec <ₗₑₓ-wellFounded _ Pred go (w , e) ctx⊢e∶τ w∈⟦e⟧
where
Pred : (List C × Expression 0) → Set _
Pred (w , e) = ∀ {τ} → ∙,∙ ⊢ e ∶ τ → w ∈ ⟦ e ⟧ [] → e ⤇ w
go : ∀ w,e → WfRec _<ₗₑₓ_ Pred w,e → Pred w,e
go ([] , ε) rec Eps w∈⟦e⟧ = Eps
go (w , Char c) rec (Char c) (c∼y ∷ []) = Char c∼y
go (w , μ e) rec (Fix ctx⊢e∶τ) w∈⟦e⟧ =
Fix (rec
(w , e [ μ e / zero ])
w,e[μe/0]<ₗₑₓw,μe
(subst₂ ctx⊢e∶τ zero (Fix ctx⊢e∶τ))
(∈-resp-⊆ ⟦μe⟧⊆⟦e[μe/0]⟧ w∈⟦e⟧))
where
w,e[μe/0]<ₗₑₓw,μe : (w , e [ μ e / zero ]) <ₗₑₓ (w , μ e)
w,e[μe/0]<ₗₑₓw,μe = inj₂ (refl , (begin-strict
rank (e [ μ e / zero ]) ≡⟨ subst₂-pres-rank ctx⊢e∶τ zero (Fix ctx⊢e∶τ) ⟩
rank e <⟨ rank-μ e ⟩
rank (μ e) ∎))
where open ≤-Reasoning
⟦μe⟧⊆⟦e[μe/0]⟧ : ⟦ μ e ⟧ [] ⊆ ⟦ e [ μ e / zero ] ⟧ []
⟦μe⟧⊆⟦e[μe/0]⟧ = begin
⟦ μ e ⟧ [] ≤⟨ ⋃-unroll (⟦⟧-mono-env e ∘ (_∷ [])) ⟩
⟦ e ⟧ [ ⟦ μ e ⟧ [] ] ≈˘⟨ subst-cong e (μ e) zero [] ⟩
⟦ e [ μ e / zero ] ⟧ [] ∎
where open ⊆-Reasoning
go (w , e₁ ∙ e₂) rec (Cat ctx⊢e₁∶τ₁ ctx⊢e₂∶τ₂ τ₁⊛τ₂) (w₁ , w₂ , w₁∈⟦e₁⟧ , w₂∈⟦e₂⟧ , eq) =
Cat
(rec (w₁ , e₁) (lex-∙ˡ e₁ e₂ [] (-, -, w₁∈⟦e₁⟧ , w₂∈⟦e₂⟧ , eq)) ctx⊢e₁∶τ₁ w₁∈⟦e₁⟧)
(rec (w₂ , e₂) (lex-∙ʳ e₁ e₂ [] ε∉⟦e₁⟧ (-, -, w₁∈⟦e₁⟧ , w₂∈⟦e₂⟧ , eq)) ctx⊢e₂∶τ₂ w₂∈⟦e₂⟧)
eq
where
open _⊛_ τ₁⊛τ₂ using (¬n₁)
ε∉⟦e₁⟧ : ¬ Null (⟦ e₁ ⟧ [])
ε∉⟦e₁⟧ = ¬n₁ ∘ _⊨_.n⇒n (soundness ctx⊢e₁∶τ₁ [] [])
go (w , e₁ ∨ e₂) rec (Vee ctx⊢e₁∶τ₁ ctx⊢e₂∶τ₂ τ₁#τ₂) (inj₁ w∈⟦e₁⟧) =
Veeˡ (rec (w , e₁) (inj₂ (refl , rank-∨ˡ e₁ e₂)) ctx⊢e₁∶τ₁ w∈⟦e₁⟧)
go (w , e₁ ∨ e₂) rec (Vee ctx⊢e₁∶τ₁ ctx⊢e₂∶τ₂ τ₁#τ₂) (inj₂ w∈⟦e₂⟧) =
Veeʳ (rec (w , e₂) (inj₂ (refl , rank-∨ʳ e₁ e₂)) ctx⊢e₂∶τ₂ w∈⟦e₂⟧)
|