blob: 22dc18f52ef34c34deb2acc386618a285d6b57ad (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
|
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Cfe.Expression.Properties
{c ℓ} (over : Setoid c ℓ)
where
open Setoid over using () renaming (Carrier to C)
open import Algebra
open import Cfe.Expression.Base over as E
open import Cfe.Language over as L
import Cfe.Language.Construct.Concatenate over as ∙
import Cfe.Language.Construct.Union over as ∪
import Cfe.Language.Indexed.Construct.Iterate over as ⋃
open import Data.Fin as F
open import Data.Fin.Properties
open import Data.Nat as ℕ hiding (_⊔_)
open import Data.Product
open import Data.Sum
open import Data.Unit
open import Data.Vec
open import Data.Vec.Properties
import Data.Vec.Relation.Binary.Pointwise.Inductive as PW
open import Function
open import Level renaming (suc to lsuc)
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_)
open import Relation.Nullary
isEquivalence : ∀ n → IsEquivalence (_≋_ {n})
isEquivalence n = record
{ refl = λ γ → ≈-refl
; sym = λ x≋y γ → ≈-sym (x≋y γ)
; trans = λ x≋y y≋z γ → ≈-trans (x≋y γ) (y≋z γ)
}
isSemiring : ∀ n → IsSemiring (_≋_ {n}) _∨_ _∙_ ⊥ ε
isSemiring n = record
{ isSemiringWithoutAnnihilatingZero = record
{ +-isCommutativeMonoid = record
{ isMonoid = record
{ isSemigroup = record
{ isMagma = record
{ isEquivalence = isEquivalence n
; ∙-cong = λ x≋y u≋v γ → ∪-comm.∙-cong (x≋y γ) (u≋v γ)
}
; assoc = λ x y z γ → ∪-comm.assoc (⟦ x ⟧ γ) (⟦ y ⟧ γ) (⟦ z ⟧ γ)
}
; identity = (λ x γ → ∪-comm.identityˡ (⟦ x ⟧ γ)) , (λ x γ → ∪-comm.identityʳ (⟦ x ⟧ γ))
}
; comm = λ x y γ → ∪-comm.comm (⟦ x ⟧ γ) (⟦ y ⟧ γ)
}
; *-isMonoid = record
{ isSemigroup = record
{ isMagma = record
{ isEquivalence = isEquivalence n
; ∙-cong = λ x≋y u≋v γ → ∙.∙-cong {c ⊔ ℓ} (x≋y γ) (u≋v γ)
}
; assoc = λ x y z γ → ∙.∙-assoc (⟦ x ⟧ γ) (⟦ y ⟧ γ) (⟦ z ⟧ γ)
}
; identity = (λ x γ → ∙.∙-identityˡ {ℓ} (⟦ x ⟧ γ)) , (λ x γ → ∙.∙-identityʳ {ℓ} (⟦ x ⟧ γ))
}
; distrib = (λ x y z γ → record
{ f = λ
{ record { l₁∈A = l₁∈⟦x⟧ ; l₂∈B = inj₁ l₂∈⟦y⟧ ; eq = eq } → inj₁ record { l₁∈A = l₁∈⟦x⟧ ; l₂∈B = l₂∈⟦y⟧ ; eq = eq }
; record { l₁∈A = l₁∈⟦x⟧ ; l₂∈B = inj₂ l₂∈⟦z⟧ ; eq = eq } → inj₂ record { l₁∈A = l₁∈⟦x⟧ ; l₂∈B = l₂∈⟦z⟧ ; eq = eq }
}
; f⁻¹ = λ
{ (inj₁ record { l₁∈A = l₁∈⟦x⟧ ; l₂∈B = l₂∈⟦y⟧ ; eq = eq }) → record { l₁∈A = l₁∈⟦x⟧ ; l₂∈B = inj₁ l₂∈⟦y⟧ ; eq = eq }
; (inj₂ record { l₁∈A = l₁∈⟦x⟧ ; l₂∈B = l₂∈⟦z⟧ ; eq = eq }) → record { l₁∈A = l₁∈⟦x⟧ ; l₂∈B = inj₂ l₂∈⟦z⟧ ; eq = eq }
}
}) , (λ x y z γ → record
{ f = λ
{ record { l₁∈A = inj₁ l₁∈⟦y⟧ ; l₂∈B = l₂∈⟦x⟧ ; eq = eq } → inj₁ record { l₁∈A = l₁∈⟦y⟧ ; l₂∈B = l₂∈⟦x⟧ ; eq = eq }
; record { l₁∈A = inj₂ l₁∈⟦z⟧ ; l₂∈B = l₂∈⟦x⟧ ; eq = eq } → inj₂ record { l₁∈A = l₁∈⟦z⟧ ; l₂∈B = l₂∈⟦x⟧ ; eq = eq }
}
; f⁻¹ = λ
{ (inj₁ record { l₁∈A = l₁∈⟦y⟧ ; l₂∈B = l₂∈⟦x⟧ ; eq = eq }) → record { l₁∈A = inj₁ l₁∈⟦y⟧ ; l₂∈B = l₂∈⟦x⟧ ; eq = eq }
; (inj₂ record { l₁∈A = l₁∈⟦z⟧ ; l₂∈B = l₂∈⟦x⟧ ; eq = eq }) → record { l₁∈A = inj₂ l₁∈⟦z⟧ ; l₂∈B = l₂∈⟦x⟧ ; eq = eq }
}
})
}
; zero = (λ x γ → record
{ f = λ ()
; f⁻¹ = λ ()
}) , (λ x γ → record
{ f = λ ()
; f⁻¹ = λ ()
})
}
where
module ∪-comm = IsCommutativeMonoid (∪.isCommutativeMonoid {c ⊔ ℓ})
module _ where
open import Data.Vec.Relation.Binary.Equality.Setoid (L.setoid (c ⊔ ℓ)) as VE
open import Data.Vec.Relation.Binary.Pointwise.Inductive as PW
cong-env : ∀ {n} → (e : Expression n) → ∀ {γ γ′} → γ VE.≋ γ′ → ⟦ e ⟧ γ ≈ ⟦ e ⟧ γ′
cong-env ⊥ γ≈γ′ = ≈-refl
cong-env ε γ≈γ′ = ≈-refl
cong-env (Char x) γ≈γ′ = ≈-refl
cong-env (e₁ ∨ e₂) γ≈γ′ = ∪-cong (cong-env e₁ γ≈γ′) (cong-env e₂ γ≈γ′)
where
open IsCommutativeMonoid (∪.isCommutativeMonoid {c ⊔ ℓ}) renaming (∙-cong to ∪-cong)
cong-env (e₁ ∙ e₂) γ≈γ′ = ∙-cong (cong-env e₁ γ≈γ′) (cong-env e₂ γ≈γ′)
where
open IsMonoid (∙.isMonoid {c ⊔ ℓ})
cong-env (Var j) γ≈γ′ = PW.lookup γ≈γ′ j
cong-env (μ e) γ≈γ′ = ⋃.⋃-cong (λ x → cong-env e (x PW.∷ γ≈γ′))
wkn-no-use : ∀ {n} → (e : Expression n) → ∀ i γ → ⟦ wkn e i ⟧ γ ≈ ⟦ e ⟧ (remove γ i)
wkn-no-use ⊥ i γ = ≈-refl
wkn-no-use ε i γ = ≈-refl
wkn-no-use (Char x) i γ = ≈-refl
wkn-no-use (e₁ ∨ e₂) i γ = ∪-cong (wkn-no-use e₁ i γ) (wkn-no-use e₂ i γ)
where
open IsCommutativeMonoid (∪.isCommutativeMonoid {c ⊔ ℓ}) renaming (∙-cong to ∪-cong)
wkn-no-use (e₁ ∙ e₂) i γ = ∙-cong (wkn-no-use e₁ i γ) (wkn-no-use e₂ i γ)
where
open IsMonoid (∙.isMonoid {c ⊔ ℓ})
wkn-no-use (Var j) i γ = reflexive (begin
lookup γ (punchIn i j) ≡˘⟨ ≡.cong (λ x → lookup x (punchIn i j)) (insert-remove γ i) ⟩
lookup (insert (remove γ i) i (lookup γ i)) (punchIn i j) ≡⟨ insert-punchIn (remove γ i) i (lookup γ i) j ⟩
lookup (remove γ i) j ∎)
where
open IsEquivalence (≈-isEquivalence {c ⊔ ℓ})
open ≡.≡-Reasoning
wkn-no-use (μ e) i (z ∷ γ) = ⋃.⋃-cong (λ {x} {y} x≈y → begin
⟦ wkn e (suc i) ⟧ (x ∷ z ∷ γ) ≈⟨ cong-env (wkn e (suc i)) (x≈y ∷ ≋-refl) ⟩
⟦ wkn e (suc i) ⟧ (y ∷ z ∷ γ) ≈⟨ wkn-no-use e (suc i) (y ∷ z ∷ γ) ⟩
⟦ e ⟧ (remove (y ∷ z ∷ γ) (suc i)) ≡⟨⟩
⟦ e ⟧ (y ∷ remove (z ∷ γ) i) ∎)
where
open import Relation.Binary.Reasoning.Setoid (L.setoid (c ⊔ ℓ))
open import Data.Vec.Relation.Binary.Equality.Setoid (L.setoid (c ⊔ ℓ)) as VE
subst-fun : ∀ {n} → (e : Expression (suc n)) → ∀ e′ i γ → ⟦ e [ e′ / i ] ⟧ γ ≈ ⟦ e ⟧ (insert γ i (⟦ e′ ⟧ γ))
subst-fun ⊥ e′ i γ = ≈-refl
subst-fun ε e′ i γ = ≈-refl
subst-fun (Char x) e′ i γ = ≈-refl
subst-fun {n} (e₁ ∨ e₂) e′ i γ = ∪-cong (subst-fun e₁ e′ i γ) (subst-fun e₂ e′ i γ)
where
open IsCommutativeMonoid (∪.isCommutativeMonoid {c ⊔ ℓ}) renaming (∙-cong to ∪-cong)
subst-fun (e₁ ∙ e₂) e′ i γ = ∙-cong (subst-fun e₁ e′ i γ) (subst-fun e₂ e′ i γ)
where
open IsMonoid (∙.isMonoid {c ⊔ ℓ})
subst-fun (Var j) e′ i γ with i F.≟ j
... | yes _≡_.refl = sym (reflexive (insert-lookup γ i (⟦ e′ ⟧ γ)))
where
open IsEquivalence (≈-isEquivalence {c ⊔ ℓ})
... | no i≢j = reflexive (begin
lookup γ (punchOut i≢j) ≡˘⟨ ≡.cong (λ x → lookup x (punchOut i≢j)) (remove-insert γ i (⟦ e′ ⟧ γ)) ⟩
lookup (remove (insert γ i (⟦ e′ ⟧ γ)) i) (punchOut i≢j) ≡⟨ remove-punchOut (insert γ i (⟦ e′ ⟧ γ)) i≢j ⟩
lookup (insert γ i (⟦ e′ ⟧ γ)) j ∎)
where
open ≡.≡-Reasoning
open IsEquivalence (≈-isEquivalence {c ⊔ ℓ})
subst-fun (μ e) e′ i γ = ⋃.⋃-cong λ {x} {y} x≈y → begin
⟦ e [ wkn e′ F.zero / suc i ] ⟧ (x ∷ γ) ≈⟨ cong-env (e [ wkn e′ F.zero / suc i ]) (x≈y ∷ ≋-refl) ⟩
⟦ e [ wkn e′ F.zero / suc i ] ⟧ (y ∷ γ) ≈⟨ subst-fun e (wkn e′ F.zero) (suc i) (y ∷ γ) ⟩
⟦ e ⟧ (y ∷ insert γ i (⟦ wkn e′ F.zero ⟧ (y ∷ γ))) ≈⟨ cong-env e (≈-refl ∷ insert′ (wkn-no-use e′ F.zero (y ∷ γ)) ≋-refl i) ⟩
⟦ e ⟧ (y ∷ insert γ i (⟦ e′ ⟧ γ)) ∎
where
open import Relation.Binary.Reasoning.Setoid (L.setoid (c ⊔ ℓ))
open import Data.Vec.Relation.Binary.Equality.Setoid (L.setoid (c ⊔ ℓ)) as VE
insert′ : ∀ {n x y} {xs ys : Vec (Language (c ⊔ ℓ)) n} → x ≈ y → xs VE.≋ ys → (i : Fin (suc n)) → insert xs i x VE.≋ insert ys i y
insert′ x≈y xs≋ys F.zero = x≈y ∷ xs≋ys
insert′ x≈y (z≈w ∷ xs≋ys) (suc i) = z≈w ∷ insert′ x≈y xs≋ys i
mono : ∀ {n} (e : Expression n) → ⟦ e ⟧ Preserves PW.Pointwise L._≤_ ⟶ L._≤_
mono ⊥ γ≤γ′ = L.≤-refl
mono ε γ≤γ′ = L.≤-refl
mono (Char x) γ≤γ′ = L.≤-refl
mono (e₁ ∨ e₂) γ≤γ′ = ∪.∪-mono (mono e₁ γ≤γ′) (mono e₂ γ≤γ′)
mono (e₁ ∙ e₂) γ≤γ′ = ∙.∙-mono (mono e₁ γ≤γ′) (mono e₂ γ≤γ′)
mono (Var i) γ≤γ′ = PW.lookup γ≤γ′ i
mono (μ e) γ≤γ′ = ⋃.⋃-mono (λ x≤y → mono e (x≤y PW.∷ γ≤γ′))
cast-inverse : ∀ {m n} e → .(m≡n : m ≡ n) → .(n≡m : n ≡ m) → E.cast m≡n (E.cast n≡m e) ≡ e
cast-inverse ⊥ m≡n n≡m = ≡.refl
cast-inverse ε m≡n n≡m = ≡.refl
cast-inverse (Char x) m≡n n≡m = ≡.refl
cast-inverse (e₁ ∨ e₂) m≡n n≡m = ≡.cong₂ _∨_ (cast-inverse e₁ m≡n n≡m) (cast-inverse e₂ m≡n n≡m)
cast-inverse (e₁ ∙ e₂) m≡n n≡m = ≡.cong₂ _∙_ (cast-inverse e₁ m≡n n≡m) (cast-inverse e₂ m≡n n≡m)
cast-inverse (Var x) m≡n n≡m = ≡.cong Var (toℕ-injective (begin
toℕ (F.cast m≡n (F.cast n≡m x)) ≡⟨ toℕ-cast m≡n (F.cast n≡m x) ⟩
toℕ (F.cast n≡m x) ≡⟨ toℕ-cast n≡m x ⟩
toℕ x ∎))
where
open ≡.≡-Reasoning
cast-inverse (μ e) m≡n n≡m = ≡.cong μ (cast-inverse e (≡.cong suc m≡n) (≡.cong suc n≡m))
cast-involutive : ∀ {k m n} e → .(k≡m : k ≡ m) → .(m≡n : m ≡ n) → .(k≡n : k ≡ n) → E.cast m≡n (E.cast k≡m e) ≡ E.cast k≡n e
cast-involutive ⊥ k≡m m≡n k≡n = ≡.refl
cast-involutive ε k≡m m≡n k≡n = ≡.refl
cast-involutive (Char x) k≡m m≡n k≡n = ≡.refl
cast-involutive (e₁ ∨ e₂) k≡m m≡n k≡n = ≡.cong₂ _∨_ (cast-involutive e₁ k≡m m≡n k≡n) (cast-involutive e₂ k≡m m≡n k≡n)
cast-involutive (e₁ ∙ e₂) k≡m m≡n k≡n = ≡.cong₂ _∙_ (cast-involutive e₁ k≡m m≡n k≡n) (cast-involutive e₂ k≡m m≡n k≡n)
cast-involutive (Var x) k≡m m≡n k≡n = ≡.cong Var (toℕ-injective (begin
toℕ (F.cast m≡n (F.cast k≡m x)) ≡⟨ toℕ-cast m≡n (F.cast k≡m x) ⟩
toℕ (F.cast k≡m x) ≡⟨ toℕ-cast k≡m x ⟩
toℕ x ≡˘⟨ toℕ-cast k≡n x ⟩
toℕ (F.cast k≡n x) ∎))
where
open ≡.≡-Reasoning
cast-involutive (μ e) k≡m m≡n k≡n = ≡.cong μ (cast-involutive e (≡.cong suc k≡m) (≡.cong suc m≡n) (≡.cong suc k≡n))
|