1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (Setoid)
module Cfe.Judgement.Base
{c ℓ} (over : Setoid c ℓ)
where
open import Cfe.Expression over hiding (rotate)
open import Cfe.Type over renaming (_∙_ to _∙ₜ_; _∨_ to _∨ₜ_)
open import Cfe.Type.Construct.Lift over
open import Data.Empty using (⊥-elim)
open import Data.Fin as F
open import Data.Fin.Properties hiding (≤-trans)
open import Data.Nat as ℕ hiding (_⊔_)
open import Data.Nat.Properties
open import Data.Product
open import Data.Vec hiding (_⊛_) renaming (lookup to lookup′)
open import Function
open import Level hiding (Lift) renaming (suc to lsuc)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
private
insert′ : ∀ {a A m n} → Vec {a} A (n ∸ m) → m ℕ.≤ n → m ≢ 0 → (i : Fin (n ∸ ℕ.pred m)) → A → Vec A (n ∸ ℕ.pred m)
insert′ {a} {A} {ℕ.zero} {n} xs m≤n m≢0 i x = ⊥-elim (m≢0 refl)
insert′ {a} {A} {suc ℕ.zero} {suc _} xs _ _ F.zero x = x ∷ xs
insert′ {a} {A} {suc ℕ.zero} {suc (suc n)} (y ∷ xs) _ _ (suc i) x = y ∷ insert′ {m = suc ℕ.zero} {suc n} xs (s≤s z≤n) (λ ()) i x
insert′ {a} {A} {suc (suc m)} {suc ℕ.zero} xs m≤n _ i x = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) m≤n)
insert′ {a} {A} {suc (suc m)} {suc (suc n)} xs m≤n _ i x = insert′ {m = suc m} xs (pred-mono m≤n) (λ ()) i x
reduce≥′ : ∀ {m n} → .(m ℕ.≤ n) → (i : Fin n) → .(toℕ i ≥ m) → Fin (n ∸ m)
reduce≥′ {ℕ.zero} {n} m≤n i i≥m = i
reduce≥′ {suc m} {suc n} m≤n (suc i) i≥m = reduce≥′ (pred-mono m≤n) i (pred-mono i≥m)
reduce≥′-mono : ∀ {m n} → .(m≤n : m ℕ.≤ n) → (i j : Fin n) → .(i≥m : toℕ i ≥ m) → (i≤j : i F.≤ j) → reduce≥′ m≤n i i≥m F.≤ reduce≥′ m≤n j (≤-trans i≥m i≤j)
reduce≥′-mono {ℕ.zero} {n} m≤n i j i≥m i≤j = i≤j
reduce≥′-mono {suc m} {suc n} m≤n (suc i) (suc j) i≥m i≤j = reduce≥′-mono (pred-mono m≤n) i j (pred-mono i≥m) (pred-mono i≤j)
remove′ : ∀ {a A m} → Vec {a} A m → .(m ≢ 0) → Fin m → Vec A (ℕ.pred m)
remove′ (x ∷ xs) m≢0 F.zero = xs
remove′ (x ∷ y ∷ xs) m≢0 (suc i) = x ∷ remove′ (y ∷ xs) (λ ()) i
rotate : ∀ {a A n} → (i j : Fin n) → .(i F.≤ j) → Vec {a} A n → Vec A n
rotate F.zero j i≤j (x ∷ xs) = insert xs j x
rotate (suc i) (suc j) i≤j (x ∷ xs) = x ∷ (rotate i j (pred-mono i≤j) xs)
record Context n : Set (c ⊔ lsuc ℓ) where
field
m : ℕ
m≤n : m ℕ.≤ n
Γ : Vec (Type ℓ ℓ) (n ∸ m)
Δ : Vec (Type ℓ ℓ) m
lookup : (i : Fin n) → toℕ i ≥ m → Type ℓ ℓ
lookup i i≥m = lookup′ Γ (reduce≥′ m≤n i i≥m)
wkn₁ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → toℕ i ≥ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n)
wkn₁ Γ,Δ i i≥m τ = record
{ m≤n = ≤-step m≤n
; Γ = subst (Vec (Type ℓ ℓ)) (sym (+-∸-assoc 1 m≤n)) (insert Γ (F.cast (+-∸-assoc 1 m≤n) (reduce≥′ (≤-step m≤n) i i≥m)) τ)
; Δ = Δ
}
where
open Context Γ,Δ
wkn₂ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → toℕ i ℕ.≤ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n)
wkn₂ Γ,Δ i i<m τ = record
{ m≤n = s≤s m≤n
; Γ = Γ
; Δ = insert Δ (fromℕ< (s≤s i<m)) τ
}
where
open Context Γ,Δ
rotate₁ : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → toℕ i ≥ Context.m Γ,Δ → .(i F.≤ j) → Context n
rotate₁ {n} Γ,Δ i j i≥m i≤j = record
{ m≤n = m≤n
; Γ = rotate (reduce≥′ m≤n i i≥m) (reduce≥′ m≤n j (≤-trans i≥m i≤j)) (reduce≥′-mono m≤n i j i≥m i≤j) Γ
; Δ = Δ
}
where
open Context Γ,Δ
rotate₂ : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → (toℕ j ℕ.< Context.m Γ,Δ) → (i F.≤ j) → Context n
rotate₂ {n} Γ,Δ i j j<m i≤j = record
{ m≤n = m≤n
; Γ = Γ
; Δ = rotate
(fromℕ< (≤-trans (s≤s i≤j) j<m))
(fromℕ< j<m)
(begin
toℕ (fromℕ< (≤-trans (s≤s i≤j) j<m)) ≡⟨ toℕ-fromℕ< (≤-trans (s≤s i≤j) j<m) ⟩
toℕ i ≤⟨ i≤j ⟩
toℕ j ≡˘⟨ toℕ-fromℕ< j<m ⟩
toℕ (fromℕ< j<m) ∎)
Δ
}
where
open Context Γ,Δ
open ≤-Reasoning
transfer : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → (toℕ i ℕ.< Context.m Γ,Δ) → (suc (toℕ j) ≥ Context.m Γ,Δ) → Context n
transfer {n} Γ,Δ i j i<m 1+j≥m with Context.m Γ,Δ ℕ.≟ 0
... | yes m≡0 = ⊥-elim (m<n⇒n≢0 i<m m≡0)
... | no m≢0 = record
{ m≤n = pred-mono (≤-step m≤n)
; Γ = insert′ Γ m≤n m≢0 (reduce≥′ (pred-mono (≤-step m≤n)) j (pred-mono 1+j≥m)) (lookup′ Δ (fromℕ< i<m))
; Δ = remove′ Δ m≢0 (fromℕ< i<m)
}
where
open Context Γ,Δ
cons : ∀ {n} → Type ℓ ℓ → Context n → Context (suc n)
cons {n} τ Γ,Δ = record
{ m≤n = s≤s m≤n
; Γ = Γ
; Δ = τ ∷ Δ
}
where
open Context Γ,Δ
shift : ∀ {n} → Context n → Context n
shift {n} Γ,Δ = record
{ m≤n = z≤n
; Γ = subst (Vec (Type ℓ ℓ)) (trans (sym (+-∸-assoc m m≤n)) (m+n∸m≡n m n)) (Δ ++ Γ)
; Δ = []
}
where
open Context Γ,Δ
infix 2 _⊢_∶_
data _⊢_∶_ : {n : ℕ} → Context n → Expression n → Type ℓ ℓ → Set (c ⊔ lsuc ℓ) where
Eps : ∀ {n} {Γ,Δ : Context n} → Γ,Δ ⊢ ε ∶ Lift ℓ ℓ τε
Char : ∀ {n} {Γ,Δ : Context n} c → Γ,Δ ⊢ Char c ∶ Lift ℓ ℓ τ[ c ]
Bot : ∀ {n} {Γ,Δ : Context n} → Γ,Δ ⊢ ⊥ ∶ Lift ℓ ℓ τ⊥
Var : ∀ {n} {Γ,Δ : Context n} {i : Fin n} (i≥m : toℕ i ℕ.≥ Context.m Γ,Δ) → Γ,Δ ⊢ Var i ∶ Context.lookup Γ,Δ i i≥m
Fix : ∀ {n} {Γ,Δ : Context n} {e τ} → cons τ Γ,Δ ⊢ e ∶ τ → Γ,Δ ⊢ μ e ∶ τ
Cat : ∀ {n} {Γ,Δ : Context n} {e₁ e₂ τ₁ τ₂} → Γ,Δ ⊢ e₁ ∶ τ₁ → shift Γ,Δ ⊢ e₂ ∶ τ₂ → (τ₁⊛τ₂ : τ₁ ⊛ τ₂) → Γ,Δ ⊢ e₁ ∙ e₂ ∶ τ₁ ∙ₜ τ₂
Vee : ∀ {n} {Γ,Δ : Context n} {e₁ e₂ τ₁ τ₂} → Γ,Δ ⊢ e₁ ∶ τ₁ → Γ,Δ ⊢ e₂ ∶ τ₂ → (τ₁#τ₂ : τ₁ # τ₂) → Γ,Δ ⊢ e₁ ∨ e₂ ∶ τ₁ ∨ₜ τ₂
|