1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
|
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (Setoid)
module Cfe.Judgement.Properties
{c ℓ} (over : Setoid c ℓ)
where
open import Cfe.Context over
renaming
( wkn₁ to cwkn₁
; wkn₂ to cwkn₂
; rotate to crotate
; rotate₁ to crotate₁
; transfer to ctransfer
; _≋_ to _≋ᶜ_
)
open import Cfe.Expression over
open import Cfe.Judgement.Base over
open import Data.Empty
open import Data.Fin as F
open import Data.Fin.Properties hiding (≤-refl; ≤-trans; ≤-irrelevant)
open import Data.Nat as ℕ
open import Data.Nat.Properties
open import Data.Product
open import Data.Vec
open import Data.Vec.Properties
open import Function
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
toℕ-punchIn : ∀ {n} i j → toℕ j ℕ.≤ toℕ (punchIn {n} i j)
toℕ-punchIn zero j = n≤1+n (toℕ j)
toℕ-punchIn (suc i) zero = ≤-refl
toℕ-punchIn (suc i) (suc j) = s≤s (toℕ-punchIn i j)
congᶜ : ∀ {n} {Γ,Δ Γ,Δ′ : Context n} {e τ} → Γ,Δ ≋ᶜ Γ,Δ′ → Γ,Δ ⊢ e ∶ τ → Γ,Δ′ ⊢ e ∶ τ
congᶜ {Γ,Δ = Γ,Δ} {Γ,Δ′} (refl , refl , refl) Γ,Δ⊢e∶τ with ≤-irrelevant (Context.m≤n Γ,Δ) (Context.m≤n Γ,Δ′)
... | refl = Γ,Δ⊢e∶τ
congᵗ : ∀ {n} {Γ,Δ : Context n} {e τ τ′} → τ ≡ τ′ → Γ,Δ ⊢ e ∶ τ → Γ,Δ ⊢ e ∶ τ′
congᵗ refl Γ,Δ⊢e∶τ = Γ,Δ⊢e∶τ
wkn₁ : ∀ {n} {Γ,Δ : Context n} {e τ} → Γ,Δ ⊢ e ∶ τ → ∀ i τ′ i≥m → cwkn₁ Γ,Δ i i≥m τ′ ⊢ wkn e i ∶ τ
wkn₁ Eps i τ′ i≥m = Eps
wkn₁ (Char c) i τ′ i≥m = Char c
wkn₁ Bot i τ′ i≥m = Bot
wkn₁ {Γ,Δ = Γ,Δ} (Var {i = j} j≥m) i τ′ i≥m = congᵗ (τ≡τ′ Γ,Δ i j i≥m j≥m τ′) (Var (≤-trans j≥m (toℕ-punchIn i j)))
where
open Context Γ,Δ
τ≡τ′ : ∀ {n} (Γ,Δ : Context n) i j i≥m j≥m τ → lookup (Context.Γ (cwkn₁ Γ,Δ i i≥m τ)) (reduce≥′ (≤-step (Context.m≤n Γ,Δ)) (punchIn i j) (≤-trans j≥m (toℕ-punchIn i j))) ≡ lookup (Context.Γ Γ,Δ) (reduce≥′ (Context.m≤n Γ,Δ) j j≥m)
τ≡τ′ {suc _} record { m = zero ; m≤n = _ ; Γ = (_ ∷ _) ; Δ = _ } zero zero _ _ _ = refl
τ≡τ′ {suc n} record { m = zero ; m≤n = _ ; Γ = (_ ∷ Γ) ; Δ = Δ } zero (suc j) _ _ τ = τ≡τ′ (record { m≤n = z≤n ; Γ = Γ ; Δ = Δ }) zero j z≤n z≤n τ
τ≡τ′ {suc n} record { m = zero ; m≤n = _ ; Γ = (_ ∷ _) ; Δ = _ } (suc _) zero _ _ τ = refl
τ≡τ′ {suc n} record { m = zero ; m≤n = _ ; Γ = (_ ∷ Γ) ; Δ = Δ } (suc i) (suc j) _ _ τ = τ≡τ′ (record { m≤n = z≤n ; Γ = Γ ; Δ = Δ}) i j z≤n z≤n τ
τ≡τ′ {suc n} record { m = (suc m) ; m≤n = (s≤s m≤n) ; Γ = Γ ; Δ = (_ ∷ Δ) } (suc i) (suc j) (s≤s i≥m) (s≤s j≥m) τ = τ≡τ′ (record { m≤n = m≤n ; Γ = Γ ; Δ = Δ}) i j i≥m j≥m τ
wkn₁ (Fix Γ,Δ⊢e∶τ) i τ′ i≥m = Fix (wkn₁ Γ,Δ⊢e∶τ (suc i) τ′ (s≤s i≥m))
wkn₁ {Γ,Δ = Γ,Δ} (Cat Γ,Δ⊢e₁∶τ₁ Δ++Γ,∙⊢e₂∶τ₂ τ₁⊛τ₂) i τ′ i≥m = Cat (wkn₁ Γ,Δ⊢e₁∶τ₁ i τ′ i≥m) (congᶜ (≋-sym (wkn₁-shift Γ,Δ i i≥m τ′)) (wkn₁ Δ++Γ,∙⊢e₂∶τ₂ i τ′ z≤n)) τ₁⊛τ₂
wkn₁ (Vee Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e₂∶τ₂ τ₁#τ₂) i τ′ i≥m = Vee (wkn₁ Γ,Δ⊢e₁∶τ₁ i τ′ i≥m) (wkn₁ Γ,Δ⊢e₂∶τ₂ i τ′ i≥m) τ₁#τ₂
wkn₂ : ∀ {n} {Γ,Δ : Context n} {e τ} → Γ,Δ ⊢ e ∶ τ → ∀ i τ′ i≤m → cwkn₂ Γ,Δ i i≤m τ′ ⊢ wkn e i ∶ τ
wkn₂ Eps i τ′ i≤m = Eps
wkn₂ (Char c) i τ′ i≤m = Char c
wkn₂ Bot i τ′ i≤m = Bot
wkn₂ {Γ,Δ = Γ,Δ} (Var {i = j} j≥m) i τ′ i≤m =
congᵗ
(τ≡τ′ (Context.Γ Γ,Δ) (Context.m≤n Γ,Δ) i j i≤m j≥m)
(Var (punchIn[i,j]≥m i j i≤m j≥m))
where
punchIn[i,j]≥m : ∀ {m n} i j → toℕ i ℕ.≤ m → toℕ j ≥ m → toℕ (punchIn {n} i j) ≥ suc m
punchIn[i,j]≥m {m} zero j i≤m j≥m = s≤s j≥m
punchIn[i,j]≥m {suc m} (suc i) (suc j) (s≤s i≤m) (s≤s j≥m) = s≤s (punchIn[i,j]≥m i j i≤m j≥m)
τ≡τ′ : ∀ {a A m n} xs m≤n i j i≤m j≥m → lookup {a} {A} xs (reduce≥′ {suc m} (s≤s m≤n) (punchIn {n} i j) (punchIn[i,j]≥m i j i≤m j≥m)) ≡ lookup xs (reduce≥′ m≤n j j≥m)
τ≡τ′ {m = zero} xs m≤n zero j i≤m j≥m = refl
τ≡τ′ {m = suc _} xs m≤n zero (suc j) i≤m (s≤s j≥m) = τ≡τ′ xs (pred-mono m≤n) zero j z≤n j≥m
τ≡τ′ {m = suc _} xs m≤n (suc i) (suc j) (s≤s i≤m) (s≤s j≥m) = τ≡τ′ xs (pred-mono m≤n) i j i≤m j≥m
wkn₂ (Fix Γ,Δ⊢e∶τ) i τ′ i≤m = Fix (wkn₂ Γ,Δ⊢e∶τ (suc i) τ′ (s≤s i≤m))
wkn₂ {Γ,Δ = Γ,Δ} (Cat Γ,Δ⊢e₁∶τ₁ Δ++Γ,∙⊢e₂∶τ₂ τ₁⊛τ₂) i τ′ i≤m = Cat (wkn₂ Γ,Δ⊢e₁∶τ₁ i τ′ i≤m) (congᶜ (≋-sym (wkn₂-shift Γ,Δ i i≤m τ′)) (wkn₁ Δ++Γ,∙⊢e₂∶τ₂ i τ′ z≤n)) τ₁⊛τ₂
wkn₂ (Vee Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e₂∶τ₂ τ₁#τ₂) i τ′ i≤m = Vee (wkn₂ Γ,Δ⊢e₁∶τ₁ i τ′ i≤m) (wkn₂ Γ,Δ⊢e₂∶τ₂ i τ′ i≤m) τ₁#τ₂
rotate₁ : ∀ {n} {Γ,Δ : Context n} {e τ} → Γ,Δ ⊢ e ∶ τ → ∀ i j i≥m i≤j → crotate₁ Γ,Δ i j i≥m i≤j ⊢ rotate e i j i≤j ∶ τ
rotate₁ Eps i j i≥m i≤j = Eps
rotate₁ (Char c) i j i≥m i≤j = Char c
rotate₁ Bot i j i≥m i≤j = Bot
rotate₁ {suc n} {Γ,Δ = record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ }} (Var {i = k} k≥m) i j i≥m i≤j with i F.≟ k
... | yes refl = congᵗ (τ≡τ′ Γ m≤n i j i≥m i≤j) (Var (≤-trans i≥m i≤j))
where
τ≡τ′ : ∀ {a A m n} xs m≤n i j i≥m i≤j → lookup {a} {A} (crotate (reduce≥′ {m} {n} m≤n i i≥m) (reduce≥′ m≤n j (≤-trans i≥m i≤j)) (reduce≥′-mono m≤n i j i≥m i≤j) xs) (reduce≥′ m≤n j (≤-trans i≥m i≤j)) ≡ lookup xs (reduce≥′ m≤n i i≥m)
τ≡τ′ {m = zero} (x ∷ xs) m≤n zero j i≥m i≤j = insert-lookup xs j x
τ≡τ′ {m = zero} (x ∷ xs) m≤n (suc i) (suc j) i≥m i≤j = τ≡τ′ xs z≤n i j z≤n (pred-mono i≤j)
τ≡τ′ {m = suc m} {suc n} xs m≤n (suc i) (suc j) (s≤s i≥m) (s≤s i≤j) = τ≡τ′ xs (pred-mono m≤n) i j i≥m i≤j
... | no i≢k = congᵗ (τ≡τ′ Γ m≤n i j k i≢k i≥m i≤j k≥m) (Var (punchIn-punchOut≥m i j k i≢k i≥m i≤j k≥m))
where
punchIn-punchOut≥m : ∀ {m n} (i j k : Fin (suc n)) (i≢k : i ≢ k) → toℕ i ≥ m → i F.≤ j → toℕ k ≥ m → toℕ (punchIn j (punchOut i≢k)) ≥ m
punchIn-punchOut≥m {zero} _ _ _ _ _ _ _ = z≤n
punchIn-punchOut≥m {suc _} zero _ zero i≢k _ _ _ = ⊥-elim (i≢k refl)
punchIn-punchOut≥m {suc _} zero zero (suc _) _ _ _ k≥m = k≥m
punchIn-punchOut≥m {suc _} {suc _} (suc i) (suc j) (suc k) i≢k (s≤s i≥m) (s≤s i≤j) (s≤s k≥m) = s≤s (punchIn-punchOut≥m i j k (i≢k ∘ cong suc) i≥m i≤j k≥m)
τ≡τ′ : ∀ {a A m n} xs m≤n i j k i≢k i≥m i≤j k≥m →
lookup {a} {A}
(crotate
(reduce≥′ {m} {suc n} m≤n i i≥m)
(reduce≥′ m≤n j (≤-trans i≥m i≤j))
(reduce≥′-mono m≤n i j i≥m i≤j) xs)
(reduce≥′
m≤n
(punchIn j (punchOut i≢k))
(punchIn-punchOut≥m i j k i≢k i≥m i≤j k≥m)) ≡
lookup xs (reduce≥′ m≤n k k≥m)
τ≡τ′ {m = zero} _ _ zero _ zero i≢k _ _ _ = ⊥-elim (i≢k refl)
τ≡τ′ {m = zero} (_ ∷ _) _ zero zero (suc _) _ _ _ _ = refl
τ≡τ′ {m = zero} (_ ∷ _ ∷ _) _ zero (suc _) (suc zero) _ _ _ _ = refl
τ≡τ′ {m = zero} (x ∷ _ ∷ xs) _ zero (suc j) (suc (suc k)) _ _ _ _ = τ≡τ′ (x ∷ xs) z≤n zero j (suc k) (λ ()) z≤n z≤n z≤n
τ≡τ′ {m = zero} (_ ∷ _ ∷ _) _ (suc _) (suc _) zero _ _ _ _ = refl
τ≡τ′ {m = zero} (_ ∷ x ∷ xs) _ (suc i) (suc j) (suc k) i≢k _ i≤j _ = τ≡τ′ (x ∷ xs) z≤n i j k (i≢k ∘ cong suc) z≤n (pred-mono i≤j) z≤n
τ≡τ′ {m = suc m} {suc _} xs m≤n (suc i) (suc j) (suc k) i≢k i≥m i≤j k≥m = τ≡τ′ xs (pred-mono m≤n) i j k (i≢k ∘ cong suc) (pred-mono i≥m) (pred-mono i≤j) (pred-mono k≥m)
rotate₁ (Fix Γ,Δ⊢e∶τ) i j i≥m i≤j = Fix (rotate₁ Γ,Δ⊢e∶τ (suc i) (suc j) (s≤s i≥m) (s≤s i≤j))
rotate₁ {Γ,Δ = Γ,Δ} (Cat Γ,Δ⊢e₁∶τ₁ Δ++Γ,∙⊢e₂∶τ₂ τ₁⊛τ₂) i j i≥m i≤j = Cat (rotate₁ Γ,Δ⊢e₁∶τ₁ i j i≥m i≤j) (congᶜ (rotate₁-shift Γ,Δ i j i≥m i≤j) (rotate₁ Δ++Γ,∙⊢e₂∶τ₂ i j z≤n i≤j)) τ₁⊛τ₂
rotate₁ (Vee Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e₂∶τ₂ τ₁#τ₂) i j i≥m i≤j = Vee (rotate₁ Γ,Δ⊢e₁∶τ₁ i j i≥m i≤j) (rotate₁ Γ,Δ⊢e₂∶τ₂ i j i≥m i≤j) τ₁#τ₂
transfer : ∀ {n} {Γ,Δ : Context n} {e τ} → Γ,Δ ⊢ e ∶ τ → ∀ i j i<m 1+j≥m → ctransfer Γ,Δ i j i<m 1+j≥m ⊢ rotate e i j (pred-mono (≤-trans i<m 1+j≥m)) ∶ τ
transfer Eps i j i<m 1+j≥m = Eps
transfer (Char c) i j i<m 1+j≥m = Char c
transfer Bot i j i<m 1+j≥m = Bot
transfer {suc n} {Γ,Δ = record { m = suc m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ }} (Var {i = k} k≥m) i j i<m 1+j≥m with suc m ℕ.≟ 0 | i F.≟ k
... | no m≢0 | yes refl = ⊥-elim (<⇒≱ i<m k≥m)
... | no m≢0 | no i≢k = congᵗ (τ≡τ′ Γ (lookup Δ (fromℕ< i<m)) m≢0 m≤n i j k i<m 1+j≥m k≥m i≢k) (Var (punchIn≥m i j k i≢k i<m 1+j≥m k≥m))
where
punchIn≥m : ∀ {m n} (i j k : Fin (suc n)) (i≢k : i ≢ k) → toℕ i ℕ.< m → .(suc (toℕ j) ≥ m) → toℕ k ≥ m → toℕ (punchIn j (punchOut i≢k)) ≥ ℕ.pred m
punchIn≥m {suc zero} _ _ _ _ _ _ _ = z≤n
punchIn≥m {suc (suc _)} zero _ zero i≢k _ _ _ = ⊥-elim (i≢k refl)
punchIn≥m {suc (suc _)} zero zero (suc _) _ _ _ (s≤s k≥m) = ≤-step k≥m
punchIn≥m {suc (suc _)} {suc _} (suc i) zero (suc k) i≢k (s≤s i<m) 1+j≥m (s≤s k≥m) = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) (≤-recomputable 1+j≥m))
punchIn≥m {suc (suc _)} zero (suc _) (suc zero) _ _ _ (s≤s k≥m) = k≥m
punchIn≥m {suc (suc _)} zero (suc j) (suc (suc k)) _ _ 1+j≥m (s≤s k≥m) = s≤s (punchIn≥m zero j (suc k) (λ ()) (s≤s z≤n) (pred-mono 1+j≥m) k≥m)
punchIn≥m {suc (suc _)} {suc _} (suc i) (suc j) (suc k) i≢k (s≤s i<m) 1+j≥m (s≤s k≥m) = s≤s (punchIn≥m i j k (i≢k ∘ cong suc) i<m (pred-mono 1+j≥m) k≥m)
τ≡τ′ : ∀ {a A m n} xs y m≢0 .(m≤n : _) i j k i<m .(1+j≥m : _) k≥m i≢k →
lookup
(insert′ {a} {A} {m} {suc n} xs m≤n m≢0
(reduce≥′ (pred-mono (≤-step m≤n)) j (pred-mono 1+j≥m))
y)
(reduce≥′
(pred-mono (≤-step m≤n))
(punchIn j (punchOut i≢k))
(punchIn≥m i j k i≢k i<m 1+j≥m k≥m)) ≡
lookup xs (reduce≥′ m≤n k k≥m)
τ≡τ′ {m = suc zero} _ _ _ _ zero zero (suc _) _ _ (s≤s z≤n) _ = refl
τ≡τ′ {m = suc zero} _ _ _ _ (suc _) zero (suc _) (s≤s ()) _ _ _
τ≡τ′ {m = suc zero} (_ ∷ _) _ _ _ zero (suc _) (suc zero) _ _ (s≤s z≤n) _ = refl
τ≡τ′ {m = suc zero} (_ ∷ xs) y _ _ zero (suc j) (suc (suc k)) _ _ (s≤s z≤n) _ = τ≡τ′ xs y (λ ()) (s≤s (z≤n)) zero j (suc k) (s≤s z≤n) (s≤s z≤n) (s≤s z≤n) (λ ())
τ≡τ′ {m = suc (suc _)} _ _ _ _ _ zero _ _ 1+j≥m _ _ = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) (≤-recomputable 1+j≥m))
τ≡τ′ {m = suc (suc _)} _ _ _ _ zero _ (suc zero) _ _ (s≤s ()) _
τ≡τ′ {m = suc (suc _)} {suc (suc _)} xs y _ m≤n zero (suc j) (suc (suc k)) _ 1+j≥m (s≤s k≥m) _ = τ≡τ′ xs y (λ ()) (pred-mono m≤n) zero j (suc k) (s≤s z≤n) (pred-mono 1+j≥m) k≥m (λ ())
τ≡τ′ {m = suc (suc m)} xs y m≢0 m≤n (suc i) (suc j) (suc zero) (s≤s i<m) 1+j≥m (s≤s k≥m) i≢k = τ≡τ′ xs y (λ ()) (pred-mono m≤n) i j zero i<m (pred-mono 1+j≥m) k≥m (i≢k ∘ cong suc)
τ≡τ′ {m = suc (suc m)} xs y m≢0 m≤n (suc i) (suc j) (suc (suc k)) (s≤s i<m) 1+j≥m (s≤s k≥m) i≢k = τ≡τ′ xs y (λ ()) (pred-mono m≤n) i j (suc k) i<m (pred-mono 1+j≥m) k≥m (i≢k ∘ cong suc)
transfer {Γ,Δ = Γ,Δ} {τ = τ} (Fix Γ,Δ⊢e∶τ) i j i<m 1+j≥m = Fix (congᶜ (transfer-cons Γ,Δ i j i<m 1+j≥m τ) (transfer Γ,Δ⊢e∶τ (suc i) (suc j) (s≤s i<m) (s≤s 1+j≥m)))
transfer {Γ,Δ = Γ,Δ} (Cat Γ,Δ⊢e₁∶τ₁ Δ++Γ,∙⊢e₂∶τ₂ τ₁⊛τ₂) i j i<m 1+j≥m = Cat (transfer Γ,Δ⊢e₁∶τ₁ i j i<m 1+j≥m) (congᶜ (transfer-shift Γ,Δ i j i<m 1+j≥m) (rotate₁ Δ++Γ,∙⊢e₂∶τ₂ i j z≤n (pred-mono (≤-trans i<m 1+j≥m)))) τ₁⊛τ₂
transfer (Vee Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e₂∶τ₂ τ₁#τ₂) i j i<m 1+j≥m = Vee (transfer Γ,Δ⊢e₁∶τ₁ i j i<m 1+j≥m) (transfer Γ,Δ⊢e₂∶τ₂ i j i<m 1+j≥m) τ₁#τ₂
|